
CASTRO

An adaptive, parallel, radiation hydrodynamics code
for self-gravitating astrophysical flows

User’s Guide

April 4, 2013

Chapter Listing

list of figures xii

list of tables xiii

1 Introduction 1

2 Getting Started 3

3 Inputs Files 7

4 Units and Constants 21

5 Equations 23

6 Gravity 27

7 Rotation 31

8 Single-Level Flow Chart 35

9 Level Sets 45

10 AMR 55

11 Equation of State and Burning Network 59

iii

iv CHAPTER LISTING

12 ConvertCheckpoint 63

13 Initializing CASTRO with MAESTRO Data 69

14 Visualization 73

15 Software Framework 77

16 Verification Test Problems 83

17 Managing Jobs on Jaguar 99

18 Scaling 101

19 Suggestions, Warnings, and Gotchas 103

References 105

Contents

list of figures xii

list of tables xiii

1 Introduction 1

2 Getting Started 3

2.1 Downloading the Code . 3

2.2 Building the Code . 3

2.3 Running the Code . 4

2.4 Visualization of the Results . 4

3 Inputs Files 7

3.1 Problem Geometry . 7
3.1.1 List of Parameters . 7
3.1.2 Examples of Usage . 7

3.2 Domain Boundary Conditions . 8
3.2.1 List of Parameters . 8
3.2.2 Notes . 8
3.2.3 Examples of Usage . 8

3.3 Resolution . 8
3.3.1 List of Parameters . 8
3.3.2 Examples of Usage . 9

3.4 Tagging . 9
3.4.1 List of Parameters . 9
3.4.2 Notes . 9

3.5 Regridding . 10
3.5.1 Overview . 10
3.5.2 List of Parameters . 10
3.5.3 Notes . 10

v

vi CONTENTS

3.5.4 Examples of Usage . 10

3.5.5 How Grids are Created . 11

3.6 Simulation Time . 11

3.6.1 List of Parameters . 11

3.6.2 Notes . 11

3.6.3 Examples of Usage . 12

3.7 Time Step . 12

3.7.1 List of Parameters . 12

3.7.2 Examples of Usage . 12

3.8 Subcycling . 13

3.8.1 List of Parameters . 13

3.8.2 Examples of Usage . 13

3.9 Restart Capability . 13

3.9.1 List of Parameters . 14

3.9.2 Notes . 14

3.9.3 Examples of Usage . 14

3.10 Controlling PlotFile Generation . 15

3.10.1 List of Parameters . 15

3.10.2 Notes . 15

3.10.3 Examples of Usage . 15

3.11 Screen Output . 16

3.11.1 List of Parameters . 16

3.11.2 Notes . 16

3.11.3 Examples of Usage . 16

3.12 Gravity . 17

3.12.1 List of Parameters . 17

3.12.2 Notes . 17

3.13 Diffusion . 17

3.13.1 List of Parameters . 17

3.13.2 Notes . 17

3.14 Rotation . 18

3.14.1 List of Parameters . 18

3.14.2 Notes . 18

3.15 Physics . 18

3.15.1 List of Parameters . 18

3.15.2 Notes . 18

4 Units and Constants 21

4.1 Units and Constants . 21

5 Equations 23

5.1 Conservation Forms . 23

5.2 Primitive Forms . 25

6 Gravity 27

6.1 Types of Approximations . 27

6.2 GR correction . 29

CONTENTS vii

7 Rotation 31

7.1 Coordinate transformation to rotating frame . 32

7.2 Momentum equation in rotating frame . 33

7.3 Energy equations in rotating frame . 33

7.4 Switching to the rotating reference frame . 34

8 Single-Level Flow Chart 35

8.0.1 Castro::advance() . 37

8.1 Advection Step . 39

8.1.1 Compute Primitive Variables . 39

8.1.2 Edge State Prediction . 40

8.1.3 Riemann Problem . 42

8.1.4 Compute Fluxes and Update . 44

9 Level Sets 45

9.1 Introduction . 45

9.1.1 An Example . 46

9.2 Terminology . 46

9.3 Functions . 47

9.3.1 INITPHI . 47

9.3.2 ADVANCE . 48

9.3.3 LSCFL . 48

9.3.4 PHIUPD . 48

9.3.5 REINIT . 50

9.3.6 FASTMARCH . 50

9.3.7 UPDATE(i) . 51

9.3.8 EVAL(i) . 51

9.3.9 FASTMARCH2 . 51

9.3.10 UPDATE2(i) . 52

9.3.11 EVAL2(i) . 52

9.4 Heap Sorting . 52

9.4.1 ADDNODE . 53

9.4.2 UPDATENODE . 53

9.4.3 RMVNODE . 53

9.5 Future Work . 53

10 AMR 55

10.1 Synchronization Algorithm . 55

11 Equation of State and Burning Network 59

11.1 Equation of State . 59

11.2 Burning Network . 60

12 ConvertCheckpoint 63

12.1 Star in Corner (star at center = 0) . 63

12.1.1 Converting the Checkpoint File . 63

12.1.2 Restarting from a Grown Checkpoint File . 64

12.2 Star at Center of Domain (star at center = 1) . 65

viii CONTENTS

12.2.1 Converting the Checkpoint File . 65

12.2.2 Restarting from a Grown Checkpoint File . 66

12.2.3 Cylindrical Coordinates . 66

13 Initializing CASTRO with MAESTRO Data 69

13.1 Overview . 69

13.2 MAESTRO Plotfile Requirements . 69

13.3 List of Parameters . 70

13.3.1 Examples of Usage . 70

13.4 New Subroutines in Prob Xd.f90 . 71

13.5 Additional Notes . 71

13.5.1 Multilevel Restart . 71

14 Visualization 73

14.1 2D and 3D . 73

14.1.1 amrvis . 73

14.1.2 VisIt . 73

14.2 Controlling What’s in the PlotFile . 74

14.3 1D . 74

15 Software Framework 77

15.1 Code structure . 77

15.2 Castro Data Structures . 78

15.2.1 State Data . 78

15.2.2 Other Quantities . 79

15.3 Setting Up Your Own Problem . 79

15.4 Boundaries . 80

15.4.1 Boundaries Between Grids . 80

15.4.2 Physical Boundaries . 80

15.5 Parallel I/O . 81

16 Verification Test Problems 83

16.1 Hydrodynamics Test Problems . 83

16.1.1 Sod’s Problem (and Other Shock Tube Problems) 83

16.1.2 Sedov Problem . 87

16.1.3 Rayleigh-Taylor . 89

16.2 Gravity Test Problems . 91

16.3 Radiation Test Problems . 91

16.3.1 Light Front . 92

16.3.2 Diffusion of a Gaussian Pulse . 92

16.3.3 Radiation Source Problem . 92

16.3.4 Radiating Sphere . 92

16.4 Regression Testing . 92

16.4.1 Test Suite Inputs File . 94

16.4.2 Initializing the Test Suite . 96

16.4.3 Regular Use . 96

16.4.4 Updating Benchmarks . 98

CONTENTS ix

17 Managing Jobs on Jaguar 99

17.1 Automatic Restarting and Archiving of Data . 99

18 Scaling 101

18.1 Sod Problem in 3D . 101

18.2 White Dwarf in 3D . 101

19 Suggestions, Warnings, and Gotchas 103

19.1 Compilers . 104
19.1.1 Those that compile... 104
19.1.2 Those that don’t compile... 104

References 105

List of Figures

12.1 Data from checkpoint file before and after the domain has been coarsened and grown.
This case uses star at center = 0 and ref ratio=2. The first grown example has
grown factor=2, the second has grown factor=3. In all figures the level 0 grids
are shown in white, the level 1 grids in red, the level 2 grids in yellow, and in the
grown figures, the level 3 grids are in pink. 67

12.2 Data from checkpoint file before and after the domain has been coarsened and grown.
This case uses star at center = 0 and ref ratio=2. The first grown example has
grown factor=2, the second has grown factor=3. In all figures the level 0 grids
are shown in white, the level 1 grids in red, the level 2 grids in yellow, and in the
grown figure, the level 3 grids are in pink. 68

16.1 Castro solution for Sod’s problem run in 3-d, with the newest ppm limiters, along
the x, y, and z axes. A coarse grid of 32 zones in the direction of propagation, with
2 levels of refinement was used. The analytic solution appears as the red line. 84

16.2 Castro solution for Sod’s problem run in 3-d, with the piecewise-linear Godunov
method with limiters, along the x, y, and z axes. A coarse grid of 32 zones in the
direction of propagation, with 2 levels of refinement was used. The analytic solution
appears as the red line. 85

16.3 Castro solution for the double rarefaction problem run in 3-d, along the x, y, and
z axes. A coarse grid of 32 zones in the direction of propagation, with 2 levels of
refinement was used. The analytic solution appears as the red line. 86

16.4 Castro solution for the strong shock problem run in 3-d, along the x, y, and z axes.
A coarse grid of 32 zones in the direction of propagation, with 2 levels of refinement
was used. The analytic solution appears as the red line. 87

16.5 Castro solution for the Sedov blast wave problem run in 1-d spherical, 2-d axisym-
metric, and 3-d Cartesian coordinates. Each of these geometries produces a spherical
Sedov explosion. 90

16.6 Castro solution for the Sedov blast wave problem run in 2-d Cartesian coordinates.
This corresponds to a cylindrical Sedov explosion. 90

16.7 Rayleigh-Taylor with different PPM types. 91

xi

xii LIST OF FIGURES

16.8 Castro solution for radiating source test problem. Heating and cooling solutions are
shown as a function of time, compared to the analytic solution. The gray photon
solver was used. 93

16.9 Castro solution for radiating sphere problem, showing the radiation energy density
as a function of energy group. This test was run with 64 photon energy groups. . . . 93

16.10Main test suite results page. Each row indicates a single test suite run, arranged by
date, and each column indicates a different test problem. Note: this page is from
the Maestro code, but a Castro test suite run will produce similar output. 94

16.11The test suite output for a single day’s run. Each row indicates a separate test,
showing whether they passed or failed. Clicking on the test name will give more
information about that particular test on that day. Note: this page is from the
Maestro code, but a Castro test suite run will produce similar output. 97

18.1 Scaling behavior of Sod problem on franklin.nersc.gov 102
18.2 Scaling behavior of ScalingTest problem on jaguarpf.ccs.ornl.gov 102

List of Tables

15.1 Conversions from physical to mathematical BCs . 80

16.1 Sedov inputs files . 88
16.2 Analysis routines for Sedov . 89

xiii

CHAPTER 1

Introduction

Welcome to the CASTRO User’s Guide!

In this User’s Guide we describe how to download and run CASTRO, a massively parallel code that
solves the multicomponent compressible hydrodynamic equations for astrophysical flows including
self-gravity, nuclear reactions and radiation. CASTRO uses an Eulerian grid and incorporates adap-
tive mesh refinement (AMR). Our approach to AMR uses a nested hierarchy of logically-rectangular
grids with simultaneous refinement in both space and time.

For more information about CASTRO, including the first two papers (published in ApJ) that de-
scribe CASTRO with and without the radiation solvers, please visit the CCSE web site, at

ccse.lbl.gov/Research/CASTRO

1

CHAPTER 2

Getting Started

2.1 Downloading the Code

CASTRO is built on top of the BoxLib framework. In order to run CASTRO, you must download
two separate git modules.

First, make sure git is installed on your machine – and we recommend version 1.7.x or higher.

1. Download the BoxLib repository by typing

git clone https://ccse.lbl.gov/pub/Downloads/BoxLib.git

This will create a directory called BoxLib on your machine. Put this somewhere out of the
way and set the environment variable, BOXLIB HOME, on your machine to the path name
where you have put BoxLib. You will want to periodically update BoxLib by typing

git pull

in the BoxLib directory.

2. Now download the CASTRO repository by typing

git clone https://ccse.lbl.gov/pub/Downloads/Castro.git

2.2 Building the Code

1. From the directory in which you checked out the Castro git repo, type

cd Castro/Exec/Sedov

3

4 Chapter 2. Getting Started

This will put you into a directory in which you can run the Sedov problem in 1-d, 2-d or 3-d.

2. In Sedov, edit the GNUmakefile, and set

DIM = 2 (for example)

COMP = your favorite C++ compiler

FCOMP = your favorite Fortran compiler (which must compile F90)

DEBUG = FALSE

We like COMP = gcc and FCOMP = gfortran. If you want to try other compilers and they
don’t work, please let us know.

To build a serial (single-processor) code, set USE MPI = FALSE. This will compile the code
without the MPI library. If you want to do a parallel run, then you would set USE MPI =

TRUE. In this case, the build system will need to know about your MPI installation. This can
be done by editing the makefiles in the BoxLib tree, but a simple method is to set the shell
environment variable BOXLIB USE MPI WRAPPERS=1. If this is set, then the build system will
fall back to using the local MPI compiler wrappers (e.g. mpic++ and mpif90) to do the build.

3. Now type ”make”. The resulting executable will look something like ”Castro2d.Linux.gcc.gfortran.ex”,
which means this is a 2-d version of the code, made on a Linux machine, with COMP = gcc
and FCOMP = gfortran.

2.3 Running the Code

1. Type ”Castro2d.Linux.gcc.gfortran.ex inputs.2d.cyl in cartcoords” This will run the 2-d cylin-
drical Sedov problem in Cartesian (x-y coordinates). You can see other possible options, which
should be clear by the names of the inputs files.

2. You will notice that running the code generates directories that look like plt00000, plt00020,
etc, and chk00000, chk00020, etc. These are ”plotfiles” and ”checkpoint” files. The plotfiles
are used for visualization, the checkpoint files are used for restarting the code.

2.4 Visualization of the Results

1. To visualize the plotfiles, you can use a freely available visualization package like VisIt, or
you can try “Amrvis.” To get Amrvis, type

git clone https://ccse.lbl.gov/pub/Downloads/Amrvis.git

Then cd into Amrvis, ddit the GNUmakefile there to set DIM = 2, and again set COMP and
FCOMP to compilers that you have. Leave DEBUG = FALSE. Then type ”make”. This will
make an executable that looks like ”amrvis2d...ex”.

If you want to build amrvis with DIM = 3, you must first download and build volpack. Type

git clone https://ccse.lbl.gov/pub/Downloads/volpack.git

Then cd into volpack and type make.

2.4—Visualization of the Results 5

Note: This requires the OSF/Motif libraries and headers. If you don’t have these you will
need to install the development version of motif through your package manager. lesstif gives
some functionality and will allow you to build the amrvis executable, but amrvis will not run
properly.

Note: On most Linux distributions, motif library is provided by the openmotif package, and its
header files (like Xm.h) are provided by openmotif-devel. If those packages are not installed,
then use the package management tool to install them, which varies from distribution to
distribution, but is straightforward. I can provide detailed instructions if anyone needs them.

You may then want to create an alias to amrvis2d, for example

alias amrvis2d /tmp/Amrvis/amrvis2d...ex

2. Return to the Castro/Exec/Sedov directory. Type ”amrvis2d plt00152” to see a single plotfile,
or ”amrvis2d -a plt*”, which will animate the sequence of plotfiles. Try playing around with
this – note you can change which variable you are looking at, you can select a region and click
”Dataset” (under View) in order to look at the actual numbers, etc. You can also export the
pictures in several different formats – under ”File”, see ”Export”.

Please know that we do have a number of conversion routines to other formats (such as
matlab), but it is hard to describe them all. If you would like to display the data in another
format, please let us know (again, asalmgren@lbl.gov) and we will point you to whatever we
have that can help.

You have now completed a brief introduction to CASTRO.

CHAPTER 3

Inputs Files

The Castro executables read run-time information from an ”inputs” file (which you put on the
command line) and from a ”probin” file, the name of which is usually defined in the inputs file, but
which defaults to ”probin”. To set the ”probin” file name in the inputs file:

amr.probin file = my special probin

for example, has the Fortran code read a file called ”my special probin”

3.1 Problem Geometry

3.1.1 List of Parameters

Parameter Definition Acceptable Values Default
geometry.prob lo physical location of low corner of the domain Real must be set
geometry.prob hi physical location of high corner of the domain Real must be set
geometry.coord sys coordinate system 0 = Cartesian, 1 = r-z, 2 = spherical must be set
geometry.is periodic is the domain periodic in this direction 0 if false, 1 if true 0 0 0

3.1.2 Examples of Usage

• geometry.prob lo = 0 0 0
defines the low corner of the domain at (0,0,0) in physical space.

• geometry.prob hi = 1.e8 2.e8 2.e8
defines the high corner of the domain at (1.e8,2.e8,2.e8) in physical space.

7

8 Chapter 3. Inputs Files

• geometry.coord sys = 0
defines the coordinate system as Cartesian

• geometry.is periodic = 0 1 0
says the domain is periodic in the y-direction only.

3.2 Domain Boundary Conditions

3.2.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.lo bc boundary type of each low face 0,1,2,3,4,5 must be set
castro.hi bc boundary type of each high face 0,1,2,3,4,5 must be set

3.2.2 Notes

Boundary types are:

0 – Interior / Periodic 3 – Symmetry
1 – Inflow 4 – Slip Wall
2 – Outflow 5 – No Slip Wall

Note – castro.lo bc and castro.hi bc must be consistent with geometry.is periodic – if the
domain is periodic in a particular direction then the low and high bc’s must be set to 0 for that
direction.

3.2.3 Examples of Usage

• castro.lo bc = 1 4 0

• castro.hi bc = 2 4 0

• geometry.is periodic = 0 0 1

would define a problem with inflow (1) in the low-x direction, outflow(2) in the high-x direction,
slip wall (4) on the low and high y-faces, and periodic in the z-direction.

3.3 Resolution

3.3.1 List of Parameters

Note: if amr.max level = 0 then you do not need to set amr.ref ratio or amr.regrid int.

3.4—Tagging 9

Parameter Definition Acceptable Values Default
amr.n cell number of cells in each direction at the coarsest level Integer > 0 must be set
amr.max level number of levels of refinement above the coarsest level Integer ≥ 0 must be set
amr.ref ratio ratio of coarse to fine grid spacing between subsequent levels 2 or 4 must be set
amr.regrid int how often to regrid Integer > 0 must be set
amr.regrid on restart should we regrid immediately after restarting 0 or 1 0

3.3.2 Examples of Usage

• amr.n cell = 32 64 64

would define the domain to have 32 cells in the x-direction, 64 cells in the y-direction, and
64 cells in the z-direction at the coarsest level. (If this line appears in a 2D inputs file then
the final number will be ignored.)

• amr.max level = 2
would allow a maximum of 2 refined levels in addition to the coarse level. Note that these ad-
ditional levels will only be created only if the tagging criteria are such that cells are flagged as
needing refinement. The number of refined levels in a calculation must be ≤ amr.max level,
but can change in time and need not always be equal to amr.max level.

• amr.ref ratio = 2 4
would set factor 2 refinement between levels 0 and 1, and factor 4 refinement between levels 1
and 2. Note that you must have at least amr.max level values of amr.ref ratio (Additional
values may appear in that line and they will be ignored).

• amr.regrid int = 2 2
tells the code to regrid every 2 steps. Thus in this example, new level 1 grids will be created
every 2 level 0 time steps, and new level 2 grids will be created every 2 level 1 time steps.

3.4 Tagging

3.4.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.allow untagging are cells allowed to be ”untagged” 0 or 1 0

3.4.2 Notes

• Typically cells at a given level can be tagged as needing refinement by any of a number of
criteria, but cannot be ”untagged”, i.e. once tagged no other criteria can untag them. If we
set castro.allow untagging = 1 then the user is allowed to ”untag” cells in the Fortran
tagging routines

10 Chapter 3. Inputs Files

3.5 Regridding

3.5.1 Overview

The details of the regridding strategy are described in a later section; here we cover how the input
parameters can control the gridding.

As described later, the user defines Fortran subroutines which tag individual cells at a given level
if they need refinement. This list of tagged cells is sent to a grid generation routine, which uses the
Berger-Rigoutsis algorithm to create rectangular grids that contain the tagged cells.

3.5.2 List of Parameters

Parameter Definition Acceptable Values Default
amr.regrid file name of file from which to read the grids text no file
amr.grid eff grid efficiency Real > 0 and < 1 0.7
amr.n error buf radius of additional tagging around already tagged cells Integer ≥ 0 1
amr.max grid size maximum size of a grid in any direction Integer > 0 128 in 2D, 32 in 3D
amr.blocking factor grid size must be a multiple of this Integer > 0 2
amr.refine grid layout refine grids more if # of processors > # of grids 0 if false, 1 if true 1

3.5.3 Notes

• amr.n error buf, amr.max grid size and amr.blocking factor can be read in as a single
value which is assigned to every level, or as multiple values, one for each level

• amr.max grid size at every level must be even

• amr.blocking factor at every level must be a power of 2

• the domain size must be a multiple of amr.blocking factor at level 0

• amr.max grid size must be a multiple of amr.blocking factor at every level

3.5.4 Examples of Usage

• amr.regrid file = fixed grids
In this case the list of grids at each fine level are contained in the file, fixed grids, which will
be read during the gridding procedure. These grids must not violate the amr.max grid size
criterion. The rest of the gridding procedure described below will not occur if amr.regrid file
is set.

• amr.grid eff = 0.9
During the grid creation process, at least 90% of the cells in each grid at the level at which
the grid creation occurs must be tagged cells.

• amr.max grid size = 64
The final grids will be no longer than 64 cells on a side at every level.

3.6—Simulation Time 11

• amr.max grid size = 64 32 16
The final grids will be no longer than 64 cells on a side at level 0, 32 cells on a side at level
1, and 16 cells on a side at level 2.

• amr.blocking factor = 32
The dimensions of all the final grids will be multiples of 32 at all levels.

• amr.blocking factor = 32 16 8
The dimensions of all the final grids will be multiples of 32 at level 0, multiples of 16 at level
1, and multiples of 8 at level 2..

Having grids that are large enough to coarsen multiple levels in a V-cycle is essential for good
multigrid performance in simulations that use self-gravity.

3.5.5 How Grids are Created

The gridding algorithm proceeds in this order:

1. Grids are created using the Berger-Rigoutsis clustering algorithm modified to ensure that all
new fine grids are divisible by amr.blocking factor.

2. Next, the grid list is chopped up if any grids are larger than max grid size. Note that be-
cause amr.max grid size is a multiple of amr.blocking factor the amr.blocking factor
criterion is still satisfied.

3. Next, if amr.refine grid layout = 1 and there are more processors than grids, and

• if amr.max grid size / 2 is a multiple of amr.blocking factor

then the grids will be redefined, at each level independently, so that the maximum length of
a grid at level `, in any dimension, is amr.max grid size[`] / 2.

4. Finally, if amr.refine grid layout = 1, and there are still more processors than grids, and

• if amr.max grid size / 4 is a multiple of amr.blocking factor

then the grids will be redefined, at each level independently, so that the maximum length of
a grid at level `, in any dimension, is amr.max grid size[`] / 4.

3.6 Simulation Time

3.6.1 List of Parameters

Parameter Definition Acceptable Values Default
max step maximum number of level 0 time steps Integer ≥ 0 -1
stop time final simulation time Real ≥ 0 -1.0

3.6.2 Notes

To control the number of time steps, you can limit by the maximum number of level 0 time steps
(max step) or by the final simulation time (stop time), or both. The code will stop at whichever

12 Chapter 3. Inputs Files

criterion comes first. Note that if the code reaches stop time then the final time step will be
shortened so as to end exactly at stop time, not pass it.

3.6.3 Examples of Usage

• max step = 1000

• stop time = 1.0

will end the calculation when either the simulation time reaches 1.0 or the number of level 0 steps
taken equals 1000, whichever comes first.

3.7 Time Step

If castro.do hydro= 1, then typically the code chooses a time step based on the CFL number (dt
= cfl * dx / max(u+c)).

3.7.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.cfl CFL number Real > 0 and ≤ 1 0.8
castro.init shrink factor by which to shrink the initial time step Real > 0 and ≤ 1 1.0
castro.change max factor by which the time step can grow in subsequent steps Real ≥ 1 1.1
castro.fixed dt level 0 time step regardless of cfl or other settings Real > 0 unused if not set
castro.initial dt initial level 0 time step regardless of other settings Real > 0 unused if not set
castro.dt cutoff time step below which calculation will abort Real > 0 0.0

3.7.2 Examples of Usage

• castro.cfl = 0.9
defines the timestep as dt = cfl * dx / umax.

• castro.init shrink = 0.01
sets the initial time step to 1% of what it would be otherwise.

• castro.change max = 1.1
allows the time step to increase by no more than 10% in this case. Note that the time step
can shrink by any factor; this only controls the extent to which it can grow.

• castro.fixed dt = 1.e-4
sets the level 0 time step to be 1.e-4 for the entire simulation, ignoring the other timestep
controls. Note that if castro.init shrink 6= 1 then the first time step will in fact be cas-
tro.init shrink * castro.fixed dt.

• castro.initial dt = 1.e-4
sets the initial level 0 time step to be 1.e-4 regardless of castro.cfl or castro.fixed dt. The
time step can grow in subsequent steps by a factor of castro.change max each step.

3.8—Subcycling 13

• castro.dt cutoff = 1.e-20
tells the code to abort if the time step ever gets below 1.e-20. This is a safety mechanism so
that if things go nuts you don’t burn through your entire computer allocation because you
don’t realize the code is misbehaving.

3.8 Subcycling

Castro supports a number of different modes for subcycling in time.

• If amr.subcycling mode=Auto (default), then the code will run with equal refinement in
space and time. In other words, if level n + 1 is a factor of 2 refinement above level n, then
n+ 1 will take 2 steps of half the duration for every level n step.

• If amr.subcycling mode=None, then the code will not refine in time. All levels will advance
together with a timestep dictated by the level with the strictest dt. Note that this is identical
to the deprecated command amr.nosub = 1.

• If amr.subcycling mode=Manual, then the code will subcycle according to the values sup-
plied by subcycling iterations.

3.8.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.subcycling mode How shall we subcycle Auto, None or Manual Auto
amr.subcycling iterations Number of cycles at each level 1 or ref ratio must be set in Manual mode

3.8.2 Examples of Usage

• amr.subcycling mode=Manual
Subcycle in manual mode with largest allowable timestep.

• amr.subcycling iterations = 1 2 1 2
Take 1 level 0 timestep at a time (required). Take 2 level 1 timesteps for each level 0 step, 1
timestep at level 2 for each level 1 step, and take 2 timesteps at level 3 for each level 2 step.

• amr.subcycling iterations = 2
Alternative form. Subcycle twice at every level (except level 0).

3.9 Restart Capability

Castro has a standard sort of checkpointing and restarting capability. In the inputs file, the fol-
lowing options control the generation of checkpoint files (which are really directories):

14 Chapter 3. Inputs Files

Parameter Definition Acceptable Values Default
amr.check file prefix for restart files Text ”chk”
amr.check int how often (by level 0 time steps) to write restart files Integer > 0 -1
amr.check per how often (by simulation time) to write restart files Real > 0 -1.0
amr.restart name of the file (directory) from which to restart Text not used if not set
amr.checkpoint files output should we write checkpoint files 0 or 1 1
amr.check nfiles how parallel is the writing of the checkpoint files Integer ≥ 1 64
amr.checkpoint on restart should we write a checkpoint immediately after restarting 0 or 1 0
castro.grown factor Factor by which domain has been grown Integer ≥ 1 1

3.9.1 List of Parameters

3.9.2 Notes

• You should specify either amr.check int or amr.check per. Do not try to specify both.

• Note that if amr.check per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• Note that amr.plotfile on restart and amr.checkpoint on restart only take effect if
amr.regrid on restart is in effect.

• See the Software Section for more details on parallel I/O and the amr.check nfiles param-
eter.

• If you are doing a scaling study then set amr.checkpoint files output = 0 so you can test
scaling of the algorithm without I/O.

3.9.3 Examples of Usage

• amr.check file = chk run

• amr.check int = 10

means that restart files (really directories) starting with the prefix ”chk run” will be gener-
ated every 10 level 0 time steps. The directory names will be chk run00000, chk run00010,
chk run00020, etc.

If instead you specify

• amr.check file = chk run

• amr.check per = 0.5

then restart files (really directories) starting with the prefix ”chk run” will be generated
every 0.1 units of simulation time. The directory names will be chk run00000, chk run00043,
chk run00061, etc, where t = 0.1 after 43 level 0 steps, t = 0.2 after 61 level 0 steps, etc.

To restart from chk run00061,for example, then set

• amr.restart = chk run00061

3.10—Controlling PlotFile Generation 15

3.10 Controlling PlotFile Generation

The main output from Castro is in the form of plotfiles (which are really directories). The following
options in the inputs file control the generation of plotfiles

3.10.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.plot file prefix for plotfiles Text ”plt”
amr.plot int how often (by level 0 time steps) to write plot files Integer > 0 -1
amr.plot per how often (by simulation time) to write plot files Real > 0 -1.0
amr.plot vars name of state variables to include in plotfiles ALL, NONE or list ALL
amr.derive plot vars name of derived variables to include in plotfiles ALL, NONE or list NONE
castro.plot X include all the species mass fractions in the plotfile 0 or 1 0
amr.plot files output should we write plot files 0 or 1 1
amr.plotfile on restart should we write a plotfile immediately after restarting 0 or 1 0
amr.plot nfiles how parallel is the writing of the plotfiles Integer ≥ 1 64
castro.plot phiGrav Should we plot the gravitational potential 0 or 1 0

All the options for amr.derive plot vars are kept in derive lst in Castro setup.cpp. Feel free
to look at it and see what’s there.

3.10.2 Notes

• You should specify either amr.plot int or amr.plot per. Do not try to specify both.

• Note that if amr.plot per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• See the Software Section for more details on parallel I/O and the amr.plot nfiles parameter.

• If you are doing a scaling study then set amr.plot files output = 0 so you can test scaling
of the algorithm without I/O.

• castro.plot phiGrav is only relevant if castro.do grav = 1 and gravity.gravity type =
PoissonGrav

3.10.3 Examples of Usage

• amr.plot file = plt run

• amr.plot int = 10

means that plot files (really directories) starting with the prefix ”plt run” will be gener-
ated every 10 level 0 time steps. The directory names will be plt run00000, plt run00010,
plt run00020, etc.

If instead you specify

• amr.plot file = plt run

16 Chapter 3. Inputs Files

• amr.plot per = 0.5

then restart files (really directories) starting with the prefix ”plt run” will be generated ev-
ery 0.1 units of simulation time. The directory names will be plt run00000, plt run00043,
plt run00061, etc, where t = 0.1 after 43 level 0 steps, t = 0.2 after 61 level 0 steps, etc.

3.11 Screen Output

3.11.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.v verbosity of Amr.cpp 0 or 1 0
castro.v verbosity of Castro.cpp 0 or 1 0
gravity.v verbosity of Gravity.cpp 0 or 1 0
diffusion.v verbosity of Diffusion.cpp 0 or 1 0
mg.v verbosity of multigrid solver (for gravity) 0,1,2,3,4 0
amr.grid log name of the file to which the grids are written Text not used if not set
amr.run log name of the file to which certain output is written Text not used if not set
amr.run log terse name of the file to which certain (terser) output is written Text not used if not set
amr.sum interval if > 0, how often (in level 0 time steps)

to compute and print integral quantities Integer -1
castro.do special tagging 0 or 1 1

3.11.2 Notes

• castro.do special tagging = 1 allows the user to set a special flag based on user-specified
criteria. This can be used, for example, to calculate the bounce time in a core collapse
simulation; the bounce time is defined as the first time at which the maximum density in the
domain exceeds a user-specified value. This time can then be printed into a special file as a
useful diagnostic.

3.11.3 Examples of Usage

• amr.grid log = grdlog
Every time the code regrids it prints a list of grids at all relevant levels. Here the code will
write these grids lists into the file grdlog.

• amr.run log = runlog
Every time step the code prints certain statements to the screen (if amr.v = 1), such as
STEP = 1 TIME = 1.91717746 DT = 1.91717746
PLOTFILE: file = plt00001
Here these statements will be written into runlog as well.

• amr.run log terse = runlogterse
This file, runlogterse differs from runlog, in that it only contains lines of the form
10 0.2 0.005
in which ”10” is the number of steps taken, ”0.2” is the simulation time, and ”0.005” is the
level 0 time step. This file can be plotted very easily to monitor the time step.

3.12—Gravity 17

• castro.sum interval = 2
if castro.sum interval > 0 then the code computes and prints certain integral quantities,
such as total mass, momentum and energy in the domain every castro.sum interval level 0
steps. In this example the code will print these quantities every two coarse time steps. The
print statements have the form
TIME= 1.91717746 MASS= 1.792410279e+34
for example. If this line is commented out then it will not compute and print these quanitities.

3.12 Gravity

3.12.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.do grav Include gravity as a forcing term 0 if false, 1 if true must be set if USE GRAV = TRUE
gravity.gravity type if castro.do grav = 1, how shall gravity be calculated ConstantGrav,

PoissonGrav,or MonopoleGrav must be set
gravity.const grav if gravity.gravity type = ConstantGrav, set the value of constant gravity Real 0.0
gravity.no sync if gravity.gravity type = PoissonGrav, whether to perform the ”sync solve” 0 or 1 0
gravity.no composite if gravity.gravity type = PoissonGrav, whether to perform a composite solve 0 or 1 0

3.12.2 Notes

Gravity types are ConstantGrav, PoissonGrav, or MonopoleGrav. See the Gravity section for more
detail.

• To include gravity you must set

– USE GRAV = TRUE in the GNUmakefile

– castro.do grav = 1 in the inputs file

• gravity.gravity type is only relevant if castro.do grav = 1

• gravity.no sync and gravity.no composite are only relevant if gravity.gravity type =
PoissonGrav, i.e. the code does a full Poisson solve for self-gravity.

3.13 Diffusion

3.13.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.diffuse temp Include thermal diffusion 0 if false, 1 if true 0
diffusion.diff coeff Real > 0 0.0

3.13.2 Notes

• To include diffusion you must set

18 Chapter 3. Inputs Files

– USE DIFFUSION = TRUE in the GNUmakefile

– castro.diffuse temp = 1 in the inputs file

• You can run a pure diffusion problem (with no hydrodynamics) by setting

– castro.diffuse temp = 1

– castro.do hydro = 0

• diffusion.diff coeff is only relevant if castro.diffuse temp = 1

3.14 Rotation

3.14.1 List of Parameters

Parameter Definition Acceptable Values Default
castro.do rotation Include rotation as a forcing term 0 if false, 1 if true 0
castro.rotational frequency Frequency (Hz) of rotation Real 0.0

3.14.2 Notes

This is for constant, solid-body rotation about a fixed axis. See the Rotation section for more
detail.

• To include rotation you must set

– USE ROTATION = TRUE in the GNUMakefile

– castro.do rotation = 1 in the inputs file

• castro.rotational frequency is only relevant if castro.do rotation = 1

3.15 Physics

3.15.1 List of Parameters

3.15.2 Notes

• You must have USE POINTMASS = TRUE in the GNUmakefile for castro.point mass to
be relevant.

• castro.gamma is only relevant for a gamma law gas.

• castro.use colglaz = 1 is only implemented in 1D

3.15—Physics 19

Parameter Definition Acceptable Values Default
castro.do hydro Time-advance the fluid dynamical equations 0 if false, 1 if true must be set
castro.do react Include reactions 0 if false, 1 if true must be set
castro.add ext src Include additional user-specified source term 0 if false, 1 if true 0
castro.point mass Point mass at the center of the star Real ≥ 0 0.0
castro.do sponge Call a user-supplied sponging routine after the solution update 0 or 1 0
castro.normalize species Enforce that

∑
iXi = 1 0 or 1 0

castro.fix mass flux Enforce constant mass flux at domain boundary 0 or 1 1
castro.allow negative energy Is internal energy allowed to be negative 0 or 1 1
castro.ppm type Use piecewise linear vs PPM algorithm 0,1,2 1
castro.use colglaz Use the Colella/Glaz algorithm? 0 or 1 0
castro.gamma Sets the value of γ Real 0.0
castro.spherical star 0 or 1 0
castro.show center of mass 0 or 1 0
castro.small dens Real -1.e20
castro.small temp Real -1.e20
castro.small pres Real -1.e20

CHAPTER 4

Units and Constants

4.1 Units and Constants

We currently support only CGS units in CASTRO. All inputs and problem initialization should
be specified in CGS. No internal conversions of units occur within the code, so the output must be
interpreted appropriately.

21

22 Chapter 4. Units and Constants

Location Variable CGS

inputs file geometry.prob lo and geometry.prob hi cm

Hydro Initialization density g / cm3

Hydro Initialization velocities cm/s

Hydro Initialization temperature K

Hydro Initialization energies erg = g (cm/s)2

Constants Supplied gravitational constant (G) 6.67428e-8 cm (cm/s)2 g−1

Constants Supplied Avogadro’s number (nA) 6.02214129e23 g−1

Constants Supplied Boltzmann’s constant (kB) 1.3806488e-16 erg / K

Output Pressure g (cm/s)2 / cm3

Output Time s

CHAPTER 5

Equations

5.1 Conservation Forms

We begin with the fully compressible equations for the conserved state vector, U = (ρ, ρu, ρE, ρAk, ρXk, ρYk) :

∂ρ

∂t
= −∇ · (ρu) + Sext,ρ, (5.1)

∂(ρu)

∂t
= −∇ · (ρuu)−∇p+ ρg + Sext,ρu, (5.2)

∂(ρE)

∂t
= −∇ · (ρuE + pu) + ρu · g −

∑
k

ρqkω̇k +∇ · κ∇T + Sext,ρE , (5.3)

∂(ρAk)

∂t
= −∇ · (ρuAk) + Sext,ρAk

, (5.4)

∂(ρXk)

∂t
= −∇ · (ρuXk) + ρω̇k + Sext,ρXk

, (5.5)

∂(ρYk)

∂t
= −∇ · (ρuYk) + Sext,ρYk . (5.6)

Here ρ,u, T, p, and κ are the density, velocity, temperature, pressure, and thermal conductivity,
respectively, and E = e + u · u/2 is the total energy with e representing the internal energy. In
addition, Xk is the abundance of the kth isotope, with associated production rate, ω̇k, and energy
release, qk. Here g is the gravitational vector, and Sext,ρ,Sextρu, etc., are user-specified source
terms. Ak is an advected quantity, i.e., a tracer. We also carry around auxiliary variables, Yk,
which have a user-defined evolution equation, but by default are treated as advected quantities.

In the code we also carry around T and ρe in the conservative state vector even though they are
derived from the other conserved quantities. The ordering of the elements within U is defined (in
3D) by

23

24 Chapter 5. Equations

• URHO: ρ

• UMX: ρu

• UMY: ρv

• UMZ: ρw

• UEDEN: ρE

• UEINT: ρe - this is computed from the other quantities using ρe = ρE − ρu · u/2.

• UTEMP: T - this is computed from the other quantities using the EOS

• UFA: ρA1, the first advected quantity

• UFS: ρX1, the first species

• UFX: ρY1, the first auxiliary variable

There are nadv advected quantities, which range from UFA: UFA+nadv-1. In addition, there are
nspec species (defined in the network directory), which range from UFS: UFS+nspec-1. Finally,
there are naux auxiliary variables, from UFX:UFX+naux-1, and nadv advected quantities, which
range from UFA: UFA + nadv - 1. The advected quantities have no effect at all on the rest of the
solution but can be useful as tracer quantities. The auxiliary variables are passed into the equation
of state routines along with the species; An example of an auxiliary variable is the electron fraction,
Ye, in core collapse simulations.

5.2—Primitive Forms 25

5.2 Primitive Forms

Here are the primitive forms of the equations for the primitive state vector, Q = (ρ,u, p, ρe, Ak, Xk, Yk):

∂ρ

∂t
= −u · ∇ρ− ρ∇ · u + Sext,ρ, (5.7)

∂u

∂t
= −u · ∇u− 1

ρ
∇p+ g +

1

ρ
(Sext,ρu − u Sext,ρ), (5.8)

∂p

∂t
= −u · ∇p− ρc2∇ · u +

(
∂p

∂ρ

)
e,X

Sext,ρ

+
1

ρ

∑
k

(
∂p

∂Xk

)
ρ,e,Xj ,j 6=k

(ρω̇k + Sext,ρXk
−XkSext,ρ)

+
1

ρ

(
∂p

∂e

)
ρ,X

[
−eSext,ρ −

∑
k

ρqkω̇k +∇ · κ∇T

+ Sext,ρE − u ·
(
Sext,ρu −

u

2
Sext,ρ

)]
(5.9)

∂(ρe)

∂t
= −u · ∇(ρe)− (ρe+ p)∇ · u−

∑
k

ρqkω̇k +∇ · κ∇T + Sext,ρE

− u ·
(

Sext,ρu −
1

2
Sext,ρu

)
, (5.10)

∂Ak
∂t

= −u · ∇Ak +
1

ρ
(Sext,ρAk

−AkSext,ρ), (5.11)

∂Xk

∂t
= −u · ∇Xk + ω̇k +

1

ρ
(Sext,ρXk

−XkSext,ρ), (5.12)

∂Yk
∂t

= −u · ∇Yk +
1

ρ
(Sext,ρYk − YkSext,ρ). (5.13)

In the code we also carry around T in the primitive state vector. All of the primitive variables
are derived from the conservative state vector, as described in Section 8.1.1. The ordering of the
elements within Q is defined (in 3D) by

• QRHO: ρ

• QU: u

• QV: v

• QW: w

• QPRES: p

• QREINT: ρe

• QTEMP: T

• QFA: A1, the first advected quantity

• QFS: X1, the first species

26 Chapter 5. Equations

• QFX: Y1, the first auxiliary variable

The full primitive variable form (without the advected or auxiliary quantities) is

∂Q

∂t
+
∑
d

Ad
∂Q

∂xd
= SQ. (5.14)

For example, in 2D:

ρ
u
v
p
ρe
Xk

t

+

u ρ 0 0 0 0
0 u 0 1

ρ 0 0

0 0 u 0 0 0
0 ρc2 0 u 0 0
0 ρe+ p 0 0 u 0
0 0 0 0 0 u

ρ
u
v
p
ρe
Xk

x

+

v 0 ρ 0 0 0
0 v 0 0 0 0
0 0 v 1

ρ 0 0

0 0 ρc2 v 0 0
0 0 ρe+ p 0 v 0
0 0 0 0 0 v

ρ
u
v
p
ρe
Xk

y

= SQ

(5.15)
The eigenvalues are:

Λ(Ax) = {u− c, u, u, u, u, u+ c}, Λ(Ay) = {v − c, v, v, v, v, v + c}. (5.16)

The right column eigenvectors are:

R(Ax) =

1 1 0 0 0 1
− c
ρ 0 0 0 0 c

ρ

0 0 1 0 0 0
c2 0 0 0 0 c2

h 0 0 1 0 h
0 0 0 0 1 0

 , R(Ay) =

1 1 0 0 0 1
0 0 1 0 0 0
− c
ρ 0 0 0 0 c

ρ

c2 0 0 0 0 c2

h 0 0 1 0 h
0 0 0 0 1 0

 . (5.17)

The left row eigenvectors, normalized so that Rd · Ld = I are:

Lx =

0 − ρ
2c 0 1

2c2
0 0

1 0 0 − 1
c2

0 0
0 0 1 0 0 0

0 0 0 − h
c2

1 0
0 0 0 0 0 1
0 ρ

2c 0 1
2c2

0 0

 , Ly =

0 0 − ρ
2c

1
2c2

0 0
1 0 0 − 1

c2
0 0

0 1 0 0 0 0

0 0 0 − h
c2

1 0
0 0 0 0 0 1
0 0 ρ

2c
1

2c2
0 0

 . (5.18)

CHAPTER 6

Gravity

There are currently four options for how gravity is calculated – these are controlled by setting
gravity.gravity type. The options are ConstantGrav, PoissonGrav, Monopole Grav or
PrescribedGrav. Note that these are only relevant if USE GRAV = TRUE in the GNUmake-
file and castro.do grav = 1 in the inputs file. If both of these are set then the user is required to
specify the gravity type in the inputs file or the program will abort.

Note that MonopoleGrav and PoissonGrav is only correct for spherical stars, i.e. in 1D we must
have coord sys = 2, in 2D we must have coord sys = 1, and in 3D we only support coord sys
= 0.

6.1 Types of Approximations

• ConstantGrav: Gravity can be defined as constant in direction and magnitude, defined in
the inputs file by

gravity.const grav = -9.8

for example, to set the gravity to have magnitude 9.8 in the negative y-direction if in 2D,
negative z-direction if in 3-D.

• PoissonGrav: The most general case is a self-induced gravitational field,

g(x, t) = ∇φ (6.1)

where φ is defined by solving

∆φ = −4πGρ. (6.2)

(We note that the sign convention used for φ here is opposite that traditionally used in
astrophysics, but the resulting gravitational acceleration will be the same.)

27

28 Chapter 6. Gravity

We only allow PoissonGrav in 2D or 3D because in 1D, computing the monopole approxi-
mation in spherical coordinates is faster and more accurate than solving the Poisson equation.

In 2D or 3D we either have doubly or triply periodic boundary conditions, or we define bound-
ary conditions for φ using the monopole approximation at the coarsest level. (Without this
the boundary conditions would be homogeneous Dirichlet which results in loss of sphericity
of the gravitational field.) We first compute a 1D radial profile of the average density at the
coarsest level, then integrate that to define a 1D radial profile of the gravitational acceleration
as below. We then integrate g to define φ, starting with φ = 0 at the center.

• MonopoleGrav:

– In 1D spherical coordinates we compute

g(r) = G ∗ (Massenclosed)/r2 ,

where Massenclosed is calculated from the density at the time of the call. For levels above
the coarsest level we define the extent of that level’s radial arrays as ranging from the
center of the star (r = 0) to the cell at that level farthest away from the origin. If there
are gaps between fine grids in that range then we interpolate the density from a coarser
level in order to construct a continuous density profile. We note that the location of
values in the density profile and in the gravitational field exactly match the location of
data at that level so there is no need to interpolate between points when mapping the
1D radial profile of g back onto the original grid.

– In 2D or 3D we compute a 1D radial average of density and use this to compute gravity
as a one-dimensional integral, then interpolate the gravity vector back onto the Cartesian
grid cells. At the coarsest level we define the extent of the 1D arrays as ranging from the
center of the star to the farthest possible point in the grid (plus a few extra cells so that
we can fill ghost cell values of gravity). At finer levels we first define a single box that
contains all boxes on that fine level, then we interpolate density from coarser levels as
needed to fill the value of density at every fine cell in that box. The extent of the radial
array is from the center of the star to the nearest cell on one of the faces of the single
box. This ensures that all cells at that maximum radius of the array are contained in
this box.

We then average the density onto a 1D radial array. We note that there is a mapping
from the Cartesian cells to the radial array and back; unlike the 1D case this requires
interpolation. We use quadratic interpolation with limiting so that the interpolation
does not create new maxima or minima.

The default resolution of the radial arrays at a level is the grid cell spacing at that
level, i.e. ∆r = ∆x. One optimization we have recently added is that one can define
castro.drdxfac as a number greater than 1 (2 or 4 are recommended) and the spacing
of the radial array will then satisfy ∆x/∆r = drdxfac. Individual Cartesian grid cells
are subdivided by drdxfac in each coordinate direction for the purposing of averaging
the density, and the integration that creates g is done at the finer resolution of the new
∆r.

Note that the center of the star is defined in the subroutine PROBINIT and the radius
is computed as the distance from that center.

6.2—GR correction 29

• PrescribedGrav:

Note: The PrescribedGrav option and text here were contributed by Jan Frederik
Engels of University of Gottingen.

With this option, gravity can be defined as a function that is specified by the user. The
option is allowed in 2D and 3D. To define the gravity vector, copy prescribe grav 2d.f90
from Src 2d to your run directory (analogously copy prescribe grav 3d.f90 from Src 3d
if you’re working in 3D). The makefile system will always choose this local copy of the file over
the one in another directory. Then define the components of gravity inside a loop over the grid
inside the file. If your problem uses a radial gravity in the form g(r), you can simply adapt
ca prescribe grav gravityprofile, otherwise you will have to adapt ca prescribe grav,
both are located in prescribed grav 2d.90.

6.2 GR correction

Note: The GR code and text here were contributed by Ken Chen of Univ. of Min-
nesota.

In the cases of compact objects or very massive stars, the general relativity (GR) effect starts to play
a role. First, we consider the hydrostatic equilibrium due to effects of GR then derive GR-correction
term for Newtonian gravity. The correction term is applied to the monopole approximation only
when USE GR = TRUE is set in the GNUmakefile.

The formulae of GR-correction here are based on [5]. For detailed physics, please refer to [13]. For
describing very strong gravitational field, we need to use Einstein field equations

Rik −
1

2
gikR =

κ

c2
Tik , κ =

8πG

c2
, (6.3)

where Rik is the Ricci tensor, gik is the metric tensor, R is the Riemann curvature, c is the speed
of light and G is gravitational constant. Tik is the energy momentum tensor, which for ideal gas
has only the non-vanishing components T00 = %c2 , T11 = T22 = T33 = P (contains rest mass and
energy density, P is pressure). We are interested in spherically symmetric mass distribution. Then
the line element ds for given spherical coordinate (r, ϑ, ϕ) has the general form

ds2 = eνc2dt2 − eλdr2 − r2(dϑ2 + sin2 ϑdϕ) , (6.4)

with ν = ν(r), λ = λ(r). Now we can put the expression of Tik and ds into (6.3), then field
equations can be reduced to 3 ordinary differential equations:

κP

c2
= e−λ(

ν ′

r
+

1

r2
)− 1

r2
, (6.5)

κP

c2
=

1

2
e−λ(ν ′′ +

1

2
ν ′

2
+
ν ′ − λ′

r
− ν ′λ′

2
) , (6.6)

κ% = e−λ(
λ′

r
− 1

r2
) +

1

r2
, (6.7)

where primes means the derivatives with respect to r. After multiplying with 4πr2, (6.7) can be
integrated and yields

κm = 4πr(1− e−λ) , (6.8)

30 Chapter 6. Gravity

the m is called “gravitational mass” inside r defined as

m =

∫ r

0
4πr2%dr . (6.9)

For the r = R, m becomes the mass M of the star. M contains not only the rest mass but
the whole energy (divided by c2), that includes the internal and gravitational energy. So the
% = %0 + U/c2 contains the whole energy density U and rest-mass density %0. Differentiation of
(6.5) with respect to r gives P = P ′(λ, λ′, ν, ν ′, r), where λ, λ′, ν, ν ′ can be eliminated by (6.5), (6.6),
(6.7). Finally we reach Tolman-Oppenheinmer-Volkoff(TOV) equation for hydrostatic equilibrium
in general relativity:

dP

dr
= −Gm

r2
%(1 +

P

%c2
)(1 +

4πr3P

mc2
)(1− 2Gm

rc2
)−1 . (6.10)

For Newtonian case c2 →∞, it reverts to usual form

dP

dr
= −Gm

r2
% . (6.11)

Now we take effective monopole gravity as

g̃ = −Gm
r2

(1 +
P

%c2
)(1 +

4πr3P

mc2
)(1− 2Gm

rc2
)−1 . (6.12)

For general situations, we neglect the U/c2 and potential energy in m because they are usually
much smaller than %0. Only when T reaches 1013K (KT ≈ mpc

2, mp is proton mass) before it
really makes a difference. So (6.12) can be expressed as

g̃ = −GMenc

r2
(1 +

P

%c2
)(1 +

4πr3P

Mencc2
)(1− 2GMenc

rc2
)−1 , (6.13)

where Menc is identical to Massenclosed in the previous section.

CHAPTER 7

Rotation

Currently, CASTRO supports contant, solid-body rotation about a fixed (in space and time) axis
in 2D and 3D by transforming the evolution equations to the rotating frame of reference. The
rotational frequency (in Hz) is specified by setting castro.rotational frequency in the inputs
file. Note that this parameter is only relevant if USE ROTATION = TRUE in the GNUmake-
file and castro.do rotation = 1 in the inputs file. The rotational frequency specified by cas-
tro.rotational frequency is internally converted to an angular freqeuncy for use in the source
term equations.

The axis of rotation currently depends on the dimensionality of the problem and the value of
coord sys; in all cases, however, the default axis of rotation points from center, which is typically
defined in a Prob $(DIM)d.f90 routine, to the typical “vertical direction.” The vertical direction is
defined as follows

• 2D

– coord sys = 0, (x,y): out of the (x,y)-plane along the “z”-axis

– coord sys = 1, (r,z): along the z-axis

• 3D

– coord sys = 0, (x,y,z): along the z-axis

To change these defaults, the omega vector in the ca rotate routine found in the Rotate $(DIM)d.f90
file.

For completeness, we show below a derivation of the source terms that appear in the momentum
and total energy evolution equations upon switching to a rotating reference frame.

31

32 Chapter 7. Rotation

7.1 Coordinate transformation to rotating frame

Consider an intertial reference frame C and a non-inertial reference frame C̃ whose origins are
separated by the vector l. The non-inertial frame is rotating about the axis ω with a constant
angular velocity ω; furthermore, we assume the direction of the rotational axis is fixed. Consider a
fluid element at the point P whose location is given by r in C and by r̃ in C̃:

r = r̃ + l, (7.1)

or in component notation
riei = r̃iẽi + liei, (7.2)

where ei and ẽi are the ith unit vectors in the C and C̃ coordinate systems, respectively. The total
time rate of change of 7.2 is given by

Dri
Dt

ei =
Dr̃i
Dt

ẽi + r̃i
Dẽi
Dt

+
Dli
Dt

ei, (7.3)

where we have used the fact that the unit vectors of the inertial frame C are not moving (or at least
can be considered stationary, and the change in l gives the relative motion of the two coordinate
systems). By definition, a unit vector can not change its length, and therefore the only change of
ẽi with time can come from changing direction. This change is carried out by a rotation about the
ω axis, and the tip of the unit vector moves circumferentially, that is

Dẽi
Dt

= ω × ẽi. (7.4)

Plugging 7.4 into 7.3 and switching back to vector notation, we have

Dr

Dt
=
Dr̃

Dt
+ ω × r̃ +

Dl

Dt
. (7.5)

The left hand side of 7.5 is interpretted as the velocity of the fluid element as seen in the intertial
frame; the first term on the right hand side is the velocity of the fluid element as seen by a stationary
observer in the rotating frame C̃. The second and third terms on the right hand side of 7.5 describe
the additional velocity due to rotation and translation of the frame C̃ as seen in C. In other words,

v = ṽ + ω × r̃ + vl, (7.6)

where we use vl to represent the translational velocity.

Similarly, by taking a second time derivative of 7.6 we have

Dv

Dt
=
Dṽ

Dt
+ 2ω × ṽ + ω × [ω × r̃] +

Dvl
Dt

. (7.7)

Henceforth we will assume the two coordinate systems are not translating relative to one another,
vl = 0. It is also worth mentioning that derivatives with respect to spatial coordinates do not
involve additional terms due to rotation, i.e. ∇ ·v = ∇ · ṽ. Because of this, the continuity equation
remains unchanged in the rotating frame:

∂ρ

∂t
= −∇ · (ρṽ) , (7.8)

or
Dρ

Dt
= −ρ∇ · ṽ. (7.9)

7.2—Momentum equation in rotating frame 33

7.2 Momentum equation in rotating frame

The usual momentum equation applies in an inertial frame:

D (ρv)

Dt
= −ρv ·∇v −∇p+ ρg. (7.10)

Using the continuity equation, 7.9, and substituting for the terms in the rotating frame from 7.7,
we have from 7.10:

ρ

(
Dṽ

Dt
+ 2ω × ṽ + ω × [ω × r̃]

)
− ρv∇ · v = −ρv ·∇v −∇p+ ρg

ρ

(
∂ṽ

∂t
+ ṽ ·∇ṽ

)
= −∇p+ ρg − 2ρω × ṽ − ρω × [ω × r̃]

∂ (ρṽ)

∂t
= −∇ · (ρṽṽ) + ∇p+ ρg − 2ρω × ṽ

− ρω × [ω × r̃] (7.11)

or
D (ρṽ)

Dt
= −ρṽ ·∇ṽ + ∇p+ ρg − 2ρω × ṽ − ρω × [ω × r̃] . (7.12)

7.3 Energy equations in rotating frame

From 7.12, we have the velocity evolution equation in a rotating frame

Dṽ

Dt
= −1

ρ
∇p+ g − 2ω × ṽ − ω × [ω × r̃] . (7.13)

The kinetic energy equation can be obtained from 7.13 by mulitplying by ρṽ:

ρṽ · Dṽ

Dt
= −ṽ ·∇p+ ρṽ · g − 2ρṽ · [ω × ṽ]− ρṽ · {ω × [ω × r̃]}

1

2

D (ρṽ · ṽ)

Dt
− 1

2
ṽ · ṽDρ

Dt
= −ṽ ·∇p+ ρṽ · g − ρṽ ·

[
(ω · r̃)ω − ρω2r̃

]
1

2

D (ρṽ · ṽ)

Dt
= −1

2
ρṽ · ṽ∇ · ṽ − ṽ ·∇p+ ρṽ · g − ρṽ ·

[
(ω · r̃)ω − ρω2r̃

]
.(7.14)

The internal energy is simply advected, and, from the first law of thermodynamics, can change due
to pdV work:

D (ρe)

Dt
= − (ρe+ p)∇ · ṽ. (7.15)

Combining 7.14 and 7.15 we can get the evolution of the total specific energy in the rotating frame,
ρẼ = ρe+ 1

2ρṽ · ṽ:

D (ρe)

Dt
+

1

2

D (ρṽ · ṽ)

Dt
= −

(
ρe+ p+

1

2
ρṽ · ṽ

)
∇ · ṽ − ṽ ·∇p+ ρṽ · g − ρṽ ·

[
(ω · r̃)ω − ρω2r̃

]
D
(
ρẼ
)

Dt
= −ρẼ∇ · ṽ −∇ · (pṽ) + ρṽ · g − ρṽ ·

[
(ω · r̃)ω − ρω2r̃

]
(7.16)

or
∂
(
ρẼ
)

∂t
= −∇ ·

(
ρẼṽ + pṽ

)
+ ρṽ · g − ρṽ ·

[
(ω · r̃)ω − ρω2r̃

]
. (7.17)

34 Chapter 7. Rotation

7.4 Switching to the rotating reference frame

If we choose to be a stationary observer in the rotating reference frame, we can drop all of the tildes,
which indicated terms in the non-inertial frame C̃. Doing so, and making sure we account for the
offset, l, between the two coordinate systems, we obtain the following equations for hydrodynamics
in a rotating frame of reference:

∂ρ

∂t
= −∇ · (ρv) (7.18)

∂ (ρv)

∂t
= −∇ · (ρvv)−∇p+ ρg − 2ρω × v − ρ (ω · r)ω + ρω2r (7.19)

∂ (ρE)

∂t
= −∇ · (ρEv + pv) + ρv · g − ρ (ω · r) (ω · v) + ρω2 (v · r) . (7.20)

Comparing the above equations with the fully compressible equations in 5.6 we see that the Coriolis
(−2ρω × v) and centrifugal

(
−ρω × [ω × r] = −ρ (ω · r)ω + ρω2r

)
terms can be swept into the

“external source term” Sext,ρu. The corresponding terms in the energy evolution equation above
can be swept into the external source term Sext,ρE of the compressible equations.

CHAPTER 8

Single-Level Flow Chart

Our equations look like:
∂U

∂t
= ∇ · F + Sreact + S, (8.1)

where F is the flux vector, Sreact are the reaction source terms, and S are the non-reaction source
terms, which includes any user-defined external sources, Sext. We use Strang splitting to discretize
the advection-reaction equations. In summary, for each time step, we update the conservative
variables, U, by reacting for half a time step, advecting for a full time step (ignoring the reaction
terms), and reacting for half a time step. In summary,

Un = Un +
∆t

2
Snreact, (8.2)

Un+1 = Un −∆t∇ · Fn+1/2 + ∆t
Sn + Sn+1

2
, (8.3)

Un+1 = Un+1 +
∆t

2
Sn+1

react, (8.4)

The construction of F is purely explicit, and based on an unsplit second-order Godunov method.
We predict the standard primitive variables, as well as ρe, at time-centered edges and use an ap-
proximate Riemann solver construct fluxes. At the beginning of the time step, we assume that U
and φ are defined consistently, i.e., ρn and φn satisfy equation (6.2).

CASTRO also supports radiation (Chapter ??) and level sets (Chapter 9). We omit the details in
this section. Here is the single-level algorithm:

Step 1: React ∆t/2.

35

36 Chapter 8. Single-Level Flow Chart

Update the solution due to the effect of reactions over half a time step.

(ρE)n = (ρE)n − ∆t

2

∑
k

(ρqkω̇k)
n, (8.5)

(ρXk)
n = (ρXk)

n +
∆t

2
(ρω̇k)

n. (8.6)

Step 2: Solve for gravity.

Solve for gravity using:

gn = ∇φn, ∆φn = −4πGρn, (8.7)

or use one of the simpler gravity types.

Step 3: Compute explicit source terms.

We now compute explicit source terms for each variable in Q and U. The primitive variable
source terms will be used to construct time-centered fluxes. The conserved variable source will
be used to advance the solution. We neglect reaction source terms since they are accounted
for in Steps 1 and 6. The source terms are:

SnQ =

Sρ
Su

Sp
Sρe
SAk

SXk

SYk

n

=

Sext,ρ

g + 1
ρSext,ρu

1
ρ
∂p
∂eSext,ρE + ∂p

∂ρSextρ

∇ · κ∇T + Sext,ρE
1
ρSext,ρAk
1
ρSext,ρXk
1
ρSext,ρYk

n

, (8.8)

SnU =

Sρu
SρE
SρAk

SρXk

SρYk

n

=

ρg + Sext,ρu

ρu · g +∇ · κ∇T + Sext,ρE

Sext,ρAk

Sext,ρXk

Sext,ρYk

n

. (8.9)

Step 3: Advect ∆t.

The goal is to advance

Un+1 = Un −∆t∇ · Fn+1/2 + ∆tSn. (8.10)

neglecting reaction terms. Note that since the source term is not time centered, this is not a
second-order method. After the advective update, we correct the solution, effectively time-
centering the source term. The advection step is complicated, and more detail is given in
Section 8.1. Here is the summarized version:

1. Compute primitive variables.

2. Predict primitive variables to time-centered edges.

3. Solve the Riemann problem.

4. Compute fluxes and update.

37

Step 4: Solve for updated gravity.

Solve for gravity using:

gn+1 = ∇φn+1; ∆φn+1 = −4πGρn+1, (8.11)

or use one of the simpler gravity types.

Step 5: Correct solution with time-centered source terms.

We need to correct the solution by effectively time-centering the source terms. These cor-
rections are to be performed sequentially since new source term evaluations may depend on
previous corrections.

First, we correct the solution with the updated gravity:

(ρu)n+1 = (ρu)n+1 +
∆t

2

[
(ρg)n+1 − (ρg)n

]
, (8.12)

(ρE)n+1 = (ρE)n+1 +
∆t

2

[
(ρu · g)n+1 − (ρu · g)n

]
. (8.13)

Next, we correct U with updated external sources. For example, for the momentum, we
correct using

(ρu)n+1 = (ρu)n+1 +
∆t

2

(
Sn+1

ext,ρu − Snext,ρu

)
. (8.14)

We correct ρE, ρAk, ρXk, and ρYk in an analogous manner.

Finally, we correct the solution with updated thermal diffusion using

(ρE)n+1 = (ρE)n+1 +
∆t

2

(
∇ · κ∇Tn+1 −∇ · κ∇Tn

)
. (8.15)

Step 6: React ∆t/2.

Update the solution due to the effect of reactions over half a time step.

(ρE)n+1 = (ρE)n+1 − ∆t

2

∑
k

(ρqkω̇k)
n+1, (8.16)

(ρXk)
n+1 = (ρXk)

n+1 +
∆t

2
(ρω̇k)

n+1. (8.17)

Step 7: Modify auxiliary variables.

This is problem-dependent. By default we treat the auxiliary variables as advected quantities,
so no additional steps are required.

Thus concludes the single-level algorithm description.

8.0.1 Castro::advance()

if (doReact)

strangChem()

38 Chapter 8. Single-Level Flow Chart

end if

if (doGrav)

define oldGravityVector

end if

if (Diffusion)

getOldDiffusionTerm()

end if

if (addExtSource)

getSource() at old time

end if

AdvanceSolution()

if (doGrav)

define newGravityVector

correct solution due to new gravity

end if

if (addExtSource)

getSource() at new time

correct solution due to new source

end if

if (Diffusion)

getNewDiffusionTerm()

correct solution due to new diffusion term

computeTemp()

end if

if (doReact)

strangChem()

end if

if (advanceAux)

advanceAux()

end if

if (LevelSet)

advanceLevelSet()

8.1—Advection Step 39

end if

8.1 Advection Step

There are four major steps in the advective update, detailed below.

8.1.1 Compute Primitive Variables

We compute the primtive variables from the conserved variables.

• ρ, ρe - directly copy these from the conserved state vector

• u, Ak, Xk, Yk - copy these from the conserved state vector, dividing by ρ

• p, T - use the EOS. First, if castro.allow negative energy = 0 (it defaults to 1) and e < 0,
we do the following:

1. Use the EOS to set e = e(ρ, Tsmall, Xk).

2. If e < 0, abort the program with an error message.

Now, use the EOS to compute p, T = p, T (ρ, e,Xk).

We also compute the flattening coefficient, χ ∈ [0, 1], used in the edge state prediction to further
limit slopes near strong shocks. We use the same flattening procedure described in the the FLASH
paper. A flattening coefficient of 1 indicates that no additional limiting takes place; a flattening
coefficient of 0 means we effectively drop order to a first-order Godunov scheme (this convention
is opposite of that used in the FLASH paper). For each cell, we compute the flattening coefficient
for each spatial direction, and choose the minimum value over all directions. As an example, to
compute the flattening for the x-direction, here are the steps:

1. Define ζ

ζi =
pi+1 − pi−1

max (psmall, |pi+2 − pi−2|)
. (8.18)

2. Define χ̃

χ̃i = min {1,max[0, a(ζi − b)]} , (8.19)

where a = 10 and b = 0.75 are tunable parameters. We are essentially setting χ̃i = a(ζi − b),
and then constraining χ̃i to lie in the range [0, 1]. Then, if either ui+1 − ui−1 < 0 or

pi+1 − pi−1

min(pi+1, pi−1)
≤ c, (8.20)

where c = 1/3 is a tunable parameter, then set χ̃i = 0.

3. Define χ

χi =

{
1−max(χ̃i, χ̃i−1) pi+1 − pi−1 > 0

1−max(χ̃i, χ̃i+1) otherwise
. (8.21)

40 Chapter 8. Single-Level Flow Chart

8.1.2 Edge State Prediction

We wish to compute a left and right state of primitive variables at each edge to be used as inputs
to the Riemann problem. We use a version of the Colella and Sekora 2009 PPM algorithm, which
has been further modified to eliminate sensitivity due to roundoff error (modifications via personal
communication with Colella). Note that CASTRO also has options for the original PPM algorithm
of Colella and Woodward 1984, and piecewise-linear algorithm described in Saltzman 1994. We
also use characteristic tracing with corner coupling in 3D, as described in Miller and Colella 2002.
We give full details of the PPM algorithm, as it has not appeared before in the literature, and
summarize the developments from Miller and Colella 2002.

The PPM algorithm is used to compute time-centered edge states by extrapolating the base-time
data in space and time. The edge states are dual-valued, i.e., at each face, there is a left state
and a right state estimate. The spatial extrapolation is one-dimensional, i.e., transverse derivatives
are ignored. We also use a flattening procedure to further limit the edge state values. The Miller
and Colella 2002 algorithm, which we describe later, incorporates the transverse terms, and also
describes the modifications required for equations with additional characteristics besides the fluid
velocity. There are four steps to compute these dual-valued edge states (here, we use s to denote
an arbitrary scalar from Q, and we write the equations in 1D, for simplicity):

• Step 1: Compute si,+ and si,−, which are spatial interpolations of s to the hi and lo side of
the face with special limiters, respectively. Begin by interpolating s to edges using a 4th-order
interpolation in space:

si+1/2 =
7

12
(si+1 + si)−

1

12
(si+2 + si−1) . (8.22)

Then, if (si+1/2−si)(si+1−si+1/2) < 0, we limit si+1/2 a nonlinear combination of approximations
to the second derivative. The steps are as follows:

1. Define:

(D2s)i+1/2 = 3
(
si − 2si+1/2 + si+1

)
(8.23)

(D2s)i+1/2,L = si−1 − 2si + si+1 (8.24)

(D2s)i+1/2,R = si − 2si+1 + si+2 (8.25)

2. Define

s = sign
[
(D2s)i+1/2

]
, (8.26)

(D2s)i+1/2,lim = smax
{

min
[
Cs
∣∣(D2s)i+1/2,L

∣∣ , Cs ∣∣(D2s)i+1/2,R

∣∣ , s ∣∣(D2s)i+1/2

∣∣] , 0} ,
(8.27)

where C = 1.25 as used in Colella and Sekora 2009. The limited value of si+1/2 is

si+1/2 =
1

2
(si + si+1)− 1

6
(D2s)i+1/2,lim. (8.28)

Now we implement an updated implementation of the Colella and Sekora 2009 algorithm
which eliminates sensitivity to roundoff. First we need to detect whether a particular cell
corresponds to an “extremum”. There are two tests.

8.1—Advection Step 41

– For the first test, define
αi,± = si±1/2 − si. (8.29)

If αi,+αi,− ≥ 0, then we are at an extremum.

– We only apply the second test if either |αi,±| > 2|αi,∓|. If so, we define:

(Ds)i,face,− = si−1/2 − si−3/2 (8.30)

(Ds)i,face,+ = si+3/2 − si−1/2 (8.31)

(Ds)i,face,min = min [|(Ds)i,face,−| , |(Ds)i,face,+|] . (8.32)

(Ds)i,cc,− = si − si−1 (8.33)

(Ds)i,cc,+ = si+1 − si (8.34)

(Ds)i,cc,min = min [|(Ds)i,cc,−| , |(Ds)i,cc,+|] . (8.35)

If (Ds)i,face,min ≥ (Ds)i,cc,min, set (Ds)i,± = (Ds)i,face,±. Otherwise, set (Ds)i,± =
(Ds)i,cc,±. Finally, we are at an extreumum if (Ds)i,+(Ds)i,− ≤ 0.

Thus concludes the extremum tests. The remaining limiters depend on whether we are at an
extremum.

– If we are at an extremum, we modify αi,±. First, we define

(D2s)i = 6(αi,+ + αi,−) (8.36)

(D2s)i,L = si−2 − 2si−1 + si (8.37)

(D2s)i,R = si − 2si+1 + si+2 (8.38)

(D2s)i,C = si−1 − 2si + si+1 (8.39)

Then, define
s = sign

[
(D2s)i

]
, (8.40)

(D2s)i,lim = max
{

min
[
s(D2s)i, Cs

∣∣(D2s)i,L
∣∣ , Cs ∣∣(D2s)i,R

∣∣ , Cs ∣∣(D2s)i,C
∣∣] , 0} .

(8.41)
Then,

αi,± =
αi,±(D2s)i,lim

max [(D2s)i, 1× 10−10]
(8.42)

– If we are not at an extremum and |αi,±| > 2|αi,∓|, then define

s = sign(αi,∓) (8.43)

δIext =
−α2

i,±
4 (αj,+ + αj,−)

, (8.44)

δs = si∓1 − si, (8.45)

If sδIext ≥ sδs, then we perform the following test. If sδs− αi,∓ ≥ 1× 10−10, then

αi,± = −2δs− 2s
[
(δs)2 − δsαi,∓

]1/2 (8.46)

otherwise,
αi,± = −2αi,∓ (8.47)

42 Chapter 8. Single-Level Flow Chart

Finally, si,± = si + αi,±.

• Step 2: Construct a quadratic profile using si,−, si, and si,+.

sIi (x) = si,− + ξ [si,+ − si,− + s6,i(1− ξ)] , (8.48)

s6 = 6si − 3 (si,− + si,+) , (8.49)

ξ =
x− ih
h

, 0 ≤ ξ ≤ 1. (8.50)

• Step 3: Integrate quadratic profiles. We are essentially computing the average value swept
out by the quadratic profile across the face assuming the profile is moving at a speed λk.

Define the following integrals, where σk = |λk|∆t/h:

Ii,+(σk) =
1

σkh

∫ (i+1/2)h

(i+1/2)h−σkh
sIi (x)dx (8.51)

Ii,−(σk) =
1

σkh

∫ (i−1/2)h+σkh

(i−1/2)h
sIi (x)dx (8.52)

Plugging in (8.48) gives:

Ii,+(σk) = si,+ −
σk
2

[
si,+ − si,− −

(
1− 2

3
σk

)
s6,i

]
, (8.53)

Ii,−(σk) = si,− +
σk
2

[
si,+ − si,− +

(
1− 2

3
σk

)
s6,i

]
. (8.54)

• Step 4: Obtain 1D edge states by performing a 1D extrapolation to get left and right edge
states. Note that we include an explicit source term contribution.

sL,i+1/2 = si − χi
∑

k:λk≥0

lk · [si − Ii,+(σk)] rk +
∆t

2
Sni , (8.55)

sR,i−1/2 = si − χi
∑

k:λk<0

lk · [si − Ii,−(σk)] rk +
∆t

2
Sni . (8.56)

Here, rk is the kth right column eigenvector of R(Ad) and lk is the kth left row eigenvector lf
L(Ad). The flattening coefficient is χi.

In order to add the transverse terms in an spatial operator unsplit framework, the details follow
exactly as given in Section 4.2.1 in Miller and Colella 2002, except for the details of the Riemann
solver, which are given below.

8.1.3 Riemann Problem

Inputs from the edge state prediction are ρL/R, uL/R, vL/R, pL/R, and (ρe)L/R (v represents all of
the transverse velocity components). We also compute γ at cell centers and copy these to edges
directly to get the left and right states, γL/R. We also define cavg as a face-centered value that is

8.1—Advection Step 43

the average of the neighboring cell-centered values of c. We have also computed ρsmall, psmall, and
csmall using cell-centered data.

Here are the steps. First, define (ρc)small = ρsmallcsmall. Then, define:

(ρc)L/R = max
[
(ρc)small,

∣∣γL/R, pL/R, ρL/R∣∣] . (8.57)

Define star states:

p∗ = max

[
psmall,

[(ρc)LpR + (ρc)RpL] + (ρc)L(ρc)R(uL − uR)

(ρc)L + (ρc)R

]
, (8.58)

u∗ =
[(ρc)LuL + (ρc)RuR] + (pL − pR)

(ρc)L + (ρc)R
. (8.59)

If u∗ ≥ 0 then define ρ0, u0, p0, (ρe)0 and γ0 to be the left state. Otherwise, define them to be the
right state. Then, set

ρ0 = max(ρsmall, ρ0), (8.60)

and define

c0 = max

(
csmall,

√
γ0p0

ρ0

)
, (8.61)

ρ∗ = ρ0 +
p∗ − p0

c2
0

, (8.62)

(ρe)∗ = (ρe)0 + (p∗ − p0)
(ρe)0 + p0

ρ0c2
0

, (8.63)

c∗ = max

(
csmall,

√∣∣∣∣γ0p∗

ρ∗

∣∣∣∣
)

(8.64)

Then,

cout = c0 − sign(u∗)u0, (8.65)

cin = c∗ − sign(u∗)u∗, (8.66)

cshock =
cin + cout

2
. (8.67)

If p∗ − p0 ≥ 0, then cin = cout = cshock. Then, if cout = cin, we define ctemp = εcavg. Otherwise,
ctemp = cout − cin. We define the fraction

f =
1

2

[
1 +

cout + cin

ctemp

]
, (8.68)

and constrain f to lie in the range f ∈ [0, 1].

To get the final “Godunov” state, for the transverse velocity, we upwind based on u∗.

vgdnv =

{
vL, u∗ ≥ 0

vR, otherwise
. (8.69)

44 Chapter 8. Single-Level Flow Chart

Then, define

ρgdnv = fρ∗ + (1− f)ρ0, (8.70)

ugdnv = fu∗ + (1− f)u0, (8.71)

pgdnv = fp∗ + (1− f)p0, (8.72)

(ρe)gdnv = f(ρe)∗ + (1− f)(ρe)0. (8.73)

Finally, if cout < 0, set ρgdnv = ρ0, ugdnv = u0, pgdnv = p0, and (ρe)gdnv = (ρe)0. If cin ≥ 0, set
ρgdnv = ρ∗, ugdnv = u∗, pgdnv = p∗, and (ρe)gdnv = (ρe)∗.

8.1.4 Compute Fluxes and Update

Compute the fluxes as a function of the primitive variables, and then advance the solution:

Un+1 = Un −∆t∇ · Fn+1/2 + ∆tSn. (8.74)

Again, note that since the source term is not time centered, this is not a second-order method.
After the advective update, we correct the solution, effectively time-centering the source term.

CHAPTER 9

Level Sets

9.1 Introduction

CASTRO has a level set package. The level sets can track a moving interface, but currently do not
feed back into the solution. We have a scalar field φ which we advect using the equation,

∂φ

∂t
+ U · ∇φ+ (κa − κbκ)|∇φ| = 0, (9.1)

where κ is the curvature,

κ = ∇ ·
(
∇φ
|∇φ|

)
. (9.2)

Typically, the “zero-levelset”, i.e., locations where φ = 0, represents some interface we care about.
Mathematically, φ can be any scalar field, but we initialize φ to be a signed distance function, such
that φ represents the physical distance from the zero-levelset. The sign of φ indicates which side
of the interface you’re on, and the sign convention can be different from example to example. We
will use the convection in [7], where φ < 0 in the unburnt region. By choosing φ to be a signed
distance function, |∇φ| = 1.

In practice, since we only care about tracking an interface, we only store and update φ in a narrow
band of cells, aptly named the narrowband. Using a narrowband lowers computational expense,
since we only advance φ in cells within the narrowband, and when initializing or reinitializing φ
(see Section 9.2), we only compute φ within the narrowband. For multilevel problems, the finest
level must have enough cells to contain the entire narrowband. You may have to write special
tagging conditions on φ to make this happen. Outside of the narrowband, we typically set φ to
some arbitrarily large positive or negative number (depending on which side of the interface you’re
on). In practice, we typically use φ = ±1 × 1030, but for these notes we refer to these values as
φ = ±∞.

45

46 Chapter 9. Level Sets

9.1.1 An Example

The CASTRO/Exec/Sedov LS/ directory contains a series of Sedov blast wave problems that use a
level set representation to track some interface. Note that the makefile includes “USE LEVELSET=TRUE”,
and the executable has a “.LevelSet” string. Any of the five inputs files (3 in 2D, 2 in 3D) work
just fine, except for regions near non-periodic boundary conditions. The “probin” files are where
you set the values of κa, κb, and some other parameters which will be described shortly.

9.2 Terminology

At the beginning of a simulation, we initialize φ within the narrowband using a user-defined de-
scription of the initial interface. We also label each cell that is within the narrowband and greater
than a specified distance from the interface as a “mine”. As the simulation progresses, we need
to “reinitialize” φ when the interface crosses a mine, which is detected by monitoring when the
sign of φ changes in a mine. During the reinitialization step, we recompute which cells lie in the
narrowband, recompute φ for all cells within the narrowband, redefine which cells are mines, and
set φ = ±∞ for all cells outside of the narrowband. For adaptive problems, we also reinitialize
after regridding.

Note that the level set code uses the convention that the cell-center of cell (i, j) is located at the
physical coordinates (i∆x, j∆y). This means that the lower-left corner of the domain does not have
physical coordinates (0, 0), but rather (−∆x/2,−∆y/2).

We carry around some auxiliary data structures to help us advance φ:

• type (in the fortran code) or LStype (in the c++ code) is an “Integer Multifab” that
associates each cell with one of four values:

– 0 = part of the narrowband, not a mine

– 1 = part of the narrowband, is a mine

– 2 = tentative

– 3 = outside of the narrowband

• nbandwidth is a fixed real number that indicates half the width of the narrowband.

• mineloc is a fixed real number that indicates half the width of the part of the narrowband
that are not mines. It follows that mineloc < nbandwidth.

• lvlerr is a fixed real number used for the tagging condition for adaptive problems. We tag if
|φ| < lvlerr.

• nband (in the fortran code) or LSnband (in the c++ code) is a list of cells and associated
coordinates that lie within narrowband. For example, nband(1,1) is the x-coordinate of the
first cell in the list and nband(3,2) is the y-coordinate of the third cell in the list. Each grid
has its own local nband. We mark the end of the list by setting the coordinates of the next
cell to be some large negative integer, i.e., nband(nbandnum+1,:) = -LARGEINT. In the
code, nband is defined as an Integer Multifab, even though when passed into fortran code it

9.3—Functions 47

is dimensioned as a two-dimensional integer array. This was done so that each grid carries its
own local copy of nband, as opposed to each processor carrying its own local copy of nband.

• nbandnum is an integer indicating the number of cells in nband.

• mine (in the fortran code) or LSmine (in the c++ code) is a list of cells and associated
coordinates that are mines, and therefore, must also be part of nband (see nband for an
example of how elements are referenced). Each grid has its own local mine. We mark the
end of the list in the same was as nband. Similar to nband, mine is defined as an Integer
Multifab even though it is used in fortran as a two-dimensional integer array.

• heap is a list of cells and associated coordinates used to dynamically sort tentative cells as
they are evaluated in the Fast Marching Method (see nband for an example of how elements
are referenced). Each grid has its own local heap. heap contains only cells at the edge of
the region containing known values. Once values in heap become known, they are removed
from heap. See Section 9.4 for more details about heap sorting.

• heaploc is a two-dimensional integer array that indicates what position in heap a particular
cell maps to. For example, if heap(5,1) = 8 and heap(5,2) = 9, then heaploc(8,9) = 5. If
heaploci = -1, then i is not in heap.

• intfacen is a list of cells and associated coordinates that are next to an interface and have a
negative value of φ. We say that a cell is next to an interface if you can construct a box with
the cell-center and neighboring three cell-centers as the vertices, in which all four cells must
be within the original narrowband and do not all have the same sign of φ. This indicates that
the narrowband crosses the box. An additional constraint required for a cell to be considered
next to an interface is that the nearest point to the interface must lie within the box in which
we constructed the bicubic polynomial to find the distance to the interface. Each grid has its
own local intfacen.

• intfacep is the same as intfacen except for positive values of φ.

• intfacenumn is the number of cells in intfacen.

• intfacenump is the number of cells in intfacep.

9.3 Functions

Following is a list of functions involving levelsets. They are written assuming the problem is 2D,
but can be generalized to 3D in a straightforward manner.

9.3.1 INITPHI

1. Compute φ everywhere as a signed distance function.

2. For each cell where |φ| < mineloc, we set type = 0.

3. For each cell where |φ| < nbandwidth, we set type = 1.

4. For all other cells, we set type = 3 and φ = sign(∞, φ).

48 Chapter 9. Level Sets

9.3.2 ADVANCE

1. Call NARROWBAND to compute nband and mine from type, making sure to mark the
end of both lists.

2. Call LSCFL to compute a stable level set advance time step for the current level, ∆tφ, and
then set ∆tφ = min(∆t−

∑
prev ∆tφ,∆tφ), where ∆t is the full state time step for that level.

3. Call PHIUPD to advance φ by ∆tφ.

4. If the interface crossed any mines, call REINIT.

5. If min(∆t−
∑

prev ∆tφ,∆tφ) 6= ∆t−
∑

prev ∆tφ, repeat steps 2 - 4.

9.3.3 LSCFL

For each cell in nband, define

speed =

√(ui+ 1
2
ex

+ ui− 1
2
ex

2

)2

+

(vi+ 1
2
ey

+ vi− 1
2
ey

2

)2

+ |κa − κbκ|. (9.3)

Define the following derivatives:

φx =
φi+ex − φi−ex

2∆x
, (9.4)

φy =
φi+ey − φi−ey

2∆y
, (9.5)

φxx =
φi+ex − 2φi + φi−ex

∆x2
, (9.6)

φyy =
φi+ey − 2φi + φi−ey

∆y2
, (9.7)

φxy =
φi+ex+ey − φi+ex−ey − φi−ex+ey + φi−ex−ey

4∆x∆y
. (9.8)

The curvature term is:

κ =

0, φ2
x + φ2

y ≤ 0,
φxxφ2

y−2φyφxφxy+φyyφ2
x

(φ2
x+φ2

y)3/2 , otherwise.
(9.9)

We have a speed constraint:

∆t ≤ 0.8∆x

speed
, (9.10)

and a curvature constraint:

∆t ≤ 0.8∆x2

4|κb|
. (9.11)

9.3.4 PHIUPD

Now we update φ by ∆t using the levelset advance equation from above:

∂φ

∂t
+ U · ∇φ+ (κa − κbκ)|∇φ| = 0. (9.12)

9.3—Functions 49

For each cell in nband whose 8 immediate neighbors are also within nband, we compute the
update:

φnew = φold −∆t (U · ∇φ+ κa|∇φ| − κbκ|∇φ|) . (9.13)

We individually examine the advection, expansion, and curvature terms below. After computing
φnew, we determine if the interface crossed any mines by checking if sign(φ) changed in any mines.

9.3.4.1 Advection Term

We first define cell-centered velocities by averaging the face-centered, time-centered velocities:

uavg =
ui+ 1

2
ex

+ ui− 1
2
ex

2
, (9.14)

vavg =
vi+ 1

2
ey

+ vi− 1
2
ey

2
. (9.15)

We define one-sided derivatives:

φ+
x =

φi+ex − φi

∆x
, (9.16)

φ−x =
φi − φi−ex

∆x
, (9.17)

φ+
y =

φi+ey − φi

∆y
, (9.18)

φ−y =
φi − φi−ey

∆y
. (9.19)

The update is:
U · ∇φ = uavgφ±x

x + vavgφ
±y
y , (9.20)

where ±x = ± if uavg ≷ 0 and ±y = ± if vavg ≷ 0.

9.3.4.2 Expansion Term

The expansion term uses upwind differences:

If κa > 0 then

|∇φ| =
√[

max(φ−x , 0) + min(φ+
x , 0)

]2
+
[
max(φ−y , 0) + min(φ+

y , 0)
]2

(9.21)

else

|∇φ| =
√[

min(φ−x , 0) + max(φ+
x , 0)

]2
+
[
min(φ−y , 0) + max(φ+

y , 0)
]2

(9.22)

end if

9.3.4.3 Curvature Term

The curvature term is:

κ|∇φ| =

0, φ2
x + φ2

y ≤ 0,
φxxφ2

y−2φyφxφxy+φyyφ2
x

φ2
x+φ2

y
, otherwise.

(9.23)

50 Chapter 9. Level Sets

9.3.5 REINIT

1. Call RETYPIFY to set type = 3 for all cells in nband.

2. Call FINDINTRFCE:

(a) For each cell i in nband, set φnew
i = sign(∞, φold

i).

(b) For each cell i in nband, call UPDATEF(i):

if cell i corresponds to the bottom-left vertex of an interface box then

i. Construct a bicubic polynomial within the interface box.

ii. For each cell-center that is a vertex of the interface box, compute the physical
location of the nearest point to the interface using the bicubic polynomial.

iii. If this point lies within the interface box, return the distance to that point, making
sure to use the min operator since any particular cell-center might be considered
a vertex for other interface boxes. If this point does not lie within the interface
box, do not return a distance and do not mark this cell center as being part of the
interface.

iv. Compute intfacep, intfacenump, intfacen, intfacenumn, making sure not to
double count. This is done by setting type =0 after the first pass through for any
given cell, and then checking to see if the cell’s type has been changed from 3 to 0.

end if

(c) Clear nband by setting nband(1,:) = -LARGEINT.

3. For each side of the interface, call FASTMARCH.

4. Fill periodic ghost cells.

5. Compute nbandnum from nband.

6. For each side of the interface, call FASTMARCH2.

7. Loop over steps 4 - 6 until done.

8. Call MINE to compute mine from type and mark the end of mine.

9.3.6 FASTMARCH

Here we generically refer to intfacep/intfacen as intface.

1. For each cell i in intface, call UPDATE(i).

2. For each cell i in intface, increment nbandnum and add i to nband.

3. If numtent > 0, call RMVNODE, which returns the coordinates of the removed node, i.

4. if φi < nbandwidth then

(a) Set typei = 0, increment nbandnum, and add i to nband

9.3—Functions 51

else

(a) Set typei = 3, set φi = sign(∞, φi), and go to step 8.

end if

5. If mineloc < φi < nbandwidth, set typei = 1.

6. Call UPDATE(i).

7. Repeat steps 3 - 6 while numtent > 0.

8. Mark the end of nband.

9. Remove all remaining nodes i from heap, set typei = 3, and set φi = sign(∞, φi)

9.3.7 UPDATE(i)

1. For each cell i′ directly above, below, left, and right of i, if typei′ > 1 and sign(φi′) = sign(φi),
call EVAL(i′).

2. For each cell i′ we called EVAL for:

if type > 2 then

(a) Set type = 2 and call ADDNODE(i′).

else

(a) Call UPDATENODE(i′).

end if

9.3.8 EVAL(i)

1. Solve |∇φ|i = 1, which can be formulated as a quadratic equation using one-sided differences
with known (type ≤ 1) points.

9.3.9 FASTMARCH2

1. Set numtent = 0 and clear heaploc.

2. For each ghost cell i directly above, below, left, or right of a valid cell, if typei ≤ 1 and
sign(φi) is positive (if were are currently marching over the positive side of the interface) or
negative (if we are marching over the negative side of the interface), call UPDATE2(i).

3. Set done = false.

4. If numtent > 0, call RMVNODE, which returns the coordines of the removed node, i.

5. if φi < nbandwidth then

(a) Set done = true.

(b) If typei ≥ 2, add i to nband and increment nbandnum.

52 Chapter 9. Level Sets

(c) Set typei = 0 and call UPDATE2(i).

else

(a) Set typei = 3, set φi = sign(∞, φi), and go to step 8.

end if

6. If mineloc < φi < nbandwidth, set typei = 1.

7. Repeat steps 4 - 6 while numtent > 0.

8. Mark the end of nband.

9. Remove all remaining nodes i from heap, set typei = 3, and set φi = sign(∞, φi)

9.3.10 UPDATE2(i)

1. For each cell i′ directly above, below, left, and right of ghost cell i, check whether it’s a valid
cell. If it’s not, skip the rest of this function and test the next i′.

2. Check the following conditions:

(a) sign(φi′) = sign(φi).

(b) |φi′ | > |φi|.

(c) |φi′ | 6= ∞ or the sign of the four cells φi′′ directly above, below, left, and right of φi′ is
positive (if were are currently marching over the positive side of the interface) or negative
(if we are marching over the negative side of the interface).

3. If conditions 2a - 2c are all true, call EVAL2(i′) (reminder: i′ is the valid cell and i is the
ghost cell)

4. Another call to EVAL2(i′)...

5. If isnew then

(a) Set typei′ = min(2, typei′).

(b) If heaploci′ = −1, call ADDNODE(i′). Otherwise, call UPDATENODE(i′).

9.3.11 EVAL2(i)

1. Solve |∇φ|i = 1, which can be formulated as a quadratic equation using one-sided differences
with valid points. There’s some fancy checking as to whether neighboring points are valid or
not. If any φ is overwritten, set isnew = true.

9.4 Heap Sorting

The heap structure that we use is called a min-heap. It has the property that every node is smaller
than its children in addition to the usual heap property, i.e., that the structure is a nearly complete
binary tree with nodes being filled out from left to right. Thus, the smallest node will always be

9.5—Future Work 53

the root of the heap. In order for the min-heap to work, this is the only property that we need
to satisfy, i.e., we don’t need to completely sort the heap. Because of this it only takes at most
O(logN) steps to perform heap operations as opposed to O(N logN) steps for a complete sort.
Any operations that we perform on the min-heap usually just involves checking to see if the current
node is either larger than its parent or smaller than its children and then swapping appropriately.
Jeff got the algorithm from Cormen’s book [1]. It is also mentioned in Sethian’s Level Set book
[9] in Chapter 8.4, page 90. You could probably find more explanations by googling min heap (or
max heap).

9.4.1 ADDNODE

ADDNODE works by adding a new node to the bottom of the heap. We then enforce the min-
heap property by checking to see if the parent node is smaller and if so we swap the current node
with its parent. We then repeat this process until the current node is smaller than its parent.

1. Put i at the bottom of the heap.

2. Restructure heap and heaploc as described above.

3. Increment numtent.

9.4.2 UPDATENODE

UPDATENODE works the same was as ADDNODE except that the current node starts some-
where in the middle of the heap. In our case we only have to check parent nodes since nodes added
from the Fast Marching Method can only be made smaller. And, so, for a more general algorithm
where a node’s value may increase, you may have to also check the value of the children nodes.

1. Restructure heap and heaploc as described above.

9.4.3 RMVNODE

RMVNODE works by removing and returning the node with the smallest value, which is at the
root of the heap. We then fill in the vacant root with the node at the end of the heap. At this
point, we see if any of the children nodes are smaller than the current root node. If so, we swap
the smaller of the children nodes with the current root node. This process is then repeated at the
node where the swap occurred until the current node is indeed smaller than its children.

1. Remove and return the coordinates i corresponding to the root of the heap.

2. Restructure heap and heaploc as described above.

3. Decrement numtent.

9.5 Future Work

• Improved hyperbolics (PLM? PPM? BDS?)

54 Chapter 9. Level Sets

• Boundary conditions

• Checkpoint compatibility

CHAPTER 10

AMR

Our approach to adaptive refinement in CASTRO uses a nested hierarchy of logically-rectangular
grids with simultaneous refinement of the grids in both space and time. The integration algorithm
on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids
are advanced multiple steps to reach the same time as the coarse grids and the data at different
levels are then synchronized.

During the regridding step, increasingly finer grids are recursively embedded in coarse grids until
the solution is sufficiently resolved. An error estimation procedure based on user-specified criteria
evaluates where additional refinement is needed and grid generation procedures dynamically create
or remove rectangular fine grid patches as resolution requirements change.

A good introduction to the style of AMR used here is in Lecture 1 of the Adaptive Mesh Refinement
Short Course at https://ccse.lbl.gov/people/jbb/index.html

10.1 Synchronization Algorithm

Here is the AMR algorithm for the compressible equations with self-gravity. The gravity component
of the algorithm is closely related to (but not identical to) that in Miniati and Colella, JCP, 2007
(in press).

Over a coarse grid time step we collect flux register information for the hyperbolic part of the
synchronization:

δF = −∆tcA
cF c +

∑
∆tfA

fF f (10.1)

Analogously, at the end of a coarse grid time step we store the mismatch in normal gradients of φ
at the coarse-fine interface:

δFφ = −Ac∂φ
c

∂n
+
∑

Af
∂φf

∂n
(10.2)

55

56 Chapter 10. AMR

Because we want the composite φc−f to satisfy the multilevel version of (6.2) at each time tn, we

do not accumulate ∂φf

∂n over time, rather we add coarse and fine fluxes only at integer coarse times.

At the end of a coarse grid time step we can define U
c−f

and φ
c−f

as the composite of the data
from coarse and fine grids as a provisional solution at time n + 1. (Assume U has been averaged
down so that the data on coarse cells underlying fine cells is the average of the fine cell data above
it.)

The synchronization consists of two parts:

• Step 1: Hyperbolic reflux

In the hyperbolic reflux step, we update the conserved variables with the flux synchronization
and adjust the gravitational terms to reflect the changes in ρ and u.

Uc,? = U
c

+
δF

V
, (10.3)

where V is the volume of the cell and the correction from δF is supported only on coarse cells
adjacent to fine grids.

• Step 2: Gravitational synchronization

In this step we correct for the mismatch in normal derivative in φc−f at the coarse-fine
interface, as well as accounting for the changes in source terms for (ρu) and (ρE) due to the
change in ρ.

On the coarse grid only, we define

(δρ)c = ρc,? − ρc. (10.4)

We then form the composite residual, which is composed of two contributions. The first is

the degree to which the current φ
c−f

does not satisfy the original equation on a composite

grid (since we have solved for φ
c−f

separately on the coarse and fine levels). The second is
the response of φ to the change in ρ. We define

R ≡ −4πGρ?,c−f −∆c−f φ
c−f

= −4πG(δρ)c − (∇ · δFφ)|c. (10.5)

Then we solve

∆c−f δφc−f = R (10.6)

as a two level solve at the coarse and fine levels. We define the update to gravity,

δgc−f = ∇(δφc−f). (10.7)

Define the syncsources for momentum on the coarse and fine, Ssync,c
ρu , and Ssync,f

ρu , respectively
as follows:

Ssync,c
ρu = (ρc + (δρ)c) (gc,n+1 + δgc−f)− ρc gc,n+1

=
[
(δρ)cgc,n+1 + ρc,?δgc)

]
(10.8)

Ssync,f
ρu = ρf δgf . (10.9)

10.1—Synchronization Algorithm 57

These momentum sources lead to the following energy sources:

Ssync,c
ρE = Ssync,c

ρu ·
(
uc,n+1 + Ssync,c

ρu ∆tc/(2ρ
c,n+1)

)
(10.10)

Ssync,f
ρE = Ssync,f

ρu ·
(
uf + Ssync,f

ρu ∆tf/(2 ρ
f)
)

(10.11)

The coarse and fine level state is updated using:

(ρu)c,n+1 = (ρu)c,? + 1/2∆tcS
sync,c
ρu , (ρu)f,n+1 = (ρu)f + 1/2∆tfS

sync,f
ρu , (10.12)

(ρE)c,n+1 = (ρE)c,? + 1/2∆tcS
sync,c
ρE , (ρE)f,n+1 = (ρE)f + 1/2∆tfS

sync,f
ρE . (10.13)

As the final component of this step we need to

– add δφc−f directly to to φc and φf and interpolate δφc−f to any finer levels and add to
the current φ at those levels.

– if level c is not the coarsest level in the calculation, then we must transmit the effect of
this change in φ to the coarser levels by updating the flux register between level c and
the next coarser level, cc. In particular, we set

δFφ
cc−c = δF cc−cφ +

∑
Ac
∂(δφ)c−f

∂n
. (10.14)

CHAPTER 11

Equation of State and Burning Network

11.1 Equation of State

CASTRO is written in a modular fashion so that the EOS and network burning routines can be
supplied by the user. However, for the examples presented later we use several EOS and network
routines that come with the CASTRO distribution.

EOS routines that come with CASTRO are (listed by directory name):

• GammaLawEOS directory represents a gamma law gas.

• HelmEOS directory contains a general, publicly available stellar equation of state based on
the Helmholtz free energy, with contributions from ions, radiation, and electron degeneracy,
as described in (Timmes and Arnett 1999, Times and Swesty 2000, and Fryxell et al. 2000).

• LattimerSwestyEOS directory contains a modified version of the LS EOS available at
http://www.astro.sunysb.edu/dswesty. Full documentation is available through that web
site. We use this EOS in the 1D core collapse supernova example in a later section.

Each EOS directory contains two subroutines by which it interfaces to the rest of the CASTRO
code. The first,

EosGivenRTX(eout, pout, ρin, T in, X in, nspec, Y
in, naux)

is a direct interface to the EOS, in which density, species and auxiliary variables, and tempera-
ture are specified, and the necessary thermodynamical variables such as internal energy, pressure,
gamma, and sound speed are returned.

The second routine,

EosGivenReX(Γout, pout, cout, T out, ρin, ein, X in, nspec, Y
in, naux)

59

60 Chapter 11. Equation of State and Burning Network

uses a Newton iteration to find the temperature given the internal energy, density, and species and
auxiliary variables.

11.2 Burning Network

Burning network routines that come with CASTRO are (listed by directory name):

• networks/null directory describes a non-reacting white dwarf, with only hydrogen, helium
and carbon12. There are no auxiliary variables, and no reactions are allowed.

• networks/collapse directory describes a pre-supernova neutron star with hydrogen, helium,
oxygen and iron, There is one auxiliary variable, Ye, the electron fraction. Again no reactions
are allowed.

• networks/ignition directory contains a single-step 12C(12C, γ)24Mg reaction. The carbon
mass fraction equation appears as

DX(12C)

Dt
= − 1

12
ρX(12C)2fCoul [NA 〈σv〉] , (11.1)

where NA 〈σv〉 is evaluated using the reaction rate from (Caughlan and Fowler 1988). The
Coulomb screening factor, fCoul, is evaluated using the general routine from the Kepler stel-
lar evolution code (Weaver 1978), which implements the work of (Graboske 1973) for weak
screening and the work of (Alastuey 1978 and Itoh 1979) for strong screening.

There are two primary files within each network directory. The first, castro burner.f90, contains
the burner routine, which takes ρin, ein, X in

k , and ∆t as inputs. It is possible for the internal energy,
e, which is computed from U, to be negative due to roundoff error. CASTRO has an option to
protect against using a negative value of e by recomputing e = e(ρ, Tsmall, Xk) using the equation
of state, where Tsmall is a user-defined temperature floor. In the event that e is still negative, we
abort the program. CASTRO also has an option to skip the reactions if the density is below a
user-defined density floor.

Next, the burner computes T = T (ρin, ein, X in
k) using the equation of state. The burner returns

Xout
k and eout by solving over a time interval of ∆t/2,

∂Xk

∂t
= ω̇k. (11.2)

(11.3)

In particular, to evolve the species, we solve the system:

dXk

dt
= ω̇k(ρ,Xk, T) , (11.4)

dT

dt
=

1

cp

(
−
∑
k

ξkω̇k

)
. (11.5)

using the stiff ordinary differential equation integration methods provided by the VODE package.
Need to include
temperature
evolution equation
somewhere The absolute error tolerances are set to 10−12 for the species, and a relative tolerance of 10−5 is used

for the temperature. The integration yields the new values of the mass fractions, Xout
k . Equation

11.2—Burning Network 61

(11.5) is derived from equation (???) by assuming that the pressure is constant during the burn
state. In evolving these equations, we need to evaluate cp and ξk. In theory, this means evaluating
the equation of state for each right-hand side evaluation that VODE requires. In practice, we freeze
cp and ξk at the start of the integration time step and compute them using ρin, X in

k , and T in as
inputs to the equation of state. Note that the density remains unchanged during the burning. At
the end of the routine, we compute T out = T (ρout, eout, Xout

k).

The second file, “network.f90”, supply the number of species and auxiliary variables, names of each
species and auxiliary variable, as well as other initializing data, such as aion, zion and the binding
energy.

It is straightforward to implement additional EOS and network routines; all that is required is to
create an appropriate interface to the CASTRO calls, which is easily done given the prototypes
supplied with the CASTRO distribution.

CHAPTER 12

ConvertCheckpoint

Within the CASTRO distribution, there is the capability to “grow” a checkpoint file so that
a calculation can be restarted in a larger domain covered by grid cells a factor of two or
four coarser than the existing coarsest level. Instructions for how to do so are in the Cas-
tro/ConvertCheckpoint/README file and are included here. Upon restart the existing data in the
checkpoint file will be used to fill the region of the previous computational domain, and the new
regions will be filled by some other means, typically interpolation from a 1D model file.

12.1 Star in Corner (star at center = 0)

In this section we consider the case where the star (or feature of interest) is centered at the lower
left corner of the domain, e.g. you are modeling only one quarter of the star in 2D, or an octant of
the star in 3D. Then you only want to grow the domain in the “high side” directions (e.g., to the
upper right).

12.1.1 Converting the Checkpoint File

Let’s say you have a checkpoint file, chk00100, say, with 5 levels of refinement and a (real) problem
domain size P and (integer) domain size D at level 0.

The inputs file that created this might have contained:

• max step = 100

• amr.max level = 5

• amr.n cell = D D

• geometry.prob lo = 0 0

63

64 Chapter 12. ConvertCheckpoint

• geometry.prob hi = P P

• amr.ref ratio = 4 4 4 4

Now let’s suppose that you want to grow the domain by a factor of 8 and cover that new larger
domain with a level that is a factor of 2 coarser than the existing level 0 grids.

1. First, set DIM = in the GNUmakefile, and type ”make” in the ConvertCheckpoint directory.
This will make an executable from the Embiggen.cpp code.

2. Run the embiggening code as follows:

Embiggen2d.Linux.Intel.Intel.ex checkin=chk00100 checkout=newchk00050 ref ratio=2
grown factor=8 star at center=0

(Your executable may have a slightly different name depending on the compilers you built it
with.)

This will create a new checkpoint directory, called newchk00050, that represents a simulation
with one additional level of refinement coarser than the previous level 0 grids by a factor of
ref ratio (in this case, 2). The new domain will be a factor of grown factor (in this case,
8) larger than the previous domain.

Note that ref ratio must be 2 or 4, because those are the only acceptable values of ref ratio
in CASTRO.

grown factor can be any reasonable integer; I’ve only tested 2, 3, 4 and 8. It does not need
to be a multiple of 2.

12.1.2 Restarting from a Grown Checkpoint File

You should now be able to restart your calculation using newchk00050.

Your inputs file should now contain lines like:

• max step = 51

• amr.restart = newchk00050

• amr.max level = 6

• amr.n cell = 4D 4D

• geometry.prob lo = 0 0

• geometry.prob hi = 8P 8P

• castro.grown factor = 8

• castro.star at center = 0

• amr.ref ratio = 2 4 4 4 4

IMPORTANT:

1. Unlike earlier, you may now set amr.max level to be at most one greater than before, but
you need not set it that high. For example, you could set amr.max level the same as before

12.2—Star at Center of Domain (star at center = 1) 65

and you would lose data at the finest refinement level. You may not set amr.max level =
0, however, because we have no data at the new level 0 until we average down from the new
level 1 after the restart.

2. You must set amr.n cell = (grown factor / ref ratio) times the previous value of
amr.n cell. In this case amr.n cell = (8/2)*D = 4D.

3. You must set amr.prob hi to be a factor of grown factor greater than the previous value
of amr.prob hi.

4. You must insert the value of ref ratio used in the Embiggen call as the first value in the list
of amr.ref ratio, since that will now be the refinement ratio between the new level 0 and
the new level 1.

5. You must set castro.grown factor in your inputs file equal to the value of grown factor
you used when you called Embiggen*ex so that the CASTRO code knows how big the original
domain was.

6. Note that if you have run 100 steps at the original level 0, that would be equivalent to 50
steps at the new level 0 because you coarsened by a factor of 2. Thus once you re-start from
the new checkpoint directory, the next step will be 51, not 101. Make sure to keep track of
your plotfiles accordingly.

7. Don’t forget to adjust max denerr lev and comparable variables to control the number of fine
levels you now want. If you want to have 6 levels of refinement after restart, then make sure
max denerr lev, etc, are set high enough. If you only want to have 5 levels of refinement
(where the new level 5 would now be a factor of ref ratio coarser than the previous level 5),
make sure to adjust max denerr lev accordingly as well.

12.2 Star at Center of Domain (star at center = 1)

Now let’s assume that the star (or feature of interest) is centered at the center of the domain in 2D
or 3D Cartesian coordinates. We will later consider the case of 2D cylindrical (r-z) coordinates in
which the star is centered at the left midpoint.

12.2.1 Converting the Checkpoint File

Suppose that you want to grow the domain by a factor of 2 and cover that new larger domain with
a level that is a factor of 2 coarser than the existing level 0 grids.

After you build the Embiggen executable, you type:

• Embiggen2d.Linux.Intel.Intel.ex checkin=chk00100 checkout=newchk00050 ref ratio=2
grown factor=2 star at center=1

Note that

• ref ratio must still be 2 or 4

• grown factor can only be 2 or 3 in this case.

66 Chapter 12. ConvertCheckpoint

12.2.2 Restarting from a Grown Checkpoint File

Your inputs file for restarting would now look like

• max step = 51

• amr.restart = newchk00050

• amr.max level = 6

• amr.n cell = D D

• geometry.prob lo = -P/2 -P/2

• geometry.prob hi = 3P/2 3P/2

• castro.grown factor = 2

• castro.star at center = 1

• amr.ref ratio = 2 4 4 4 4

12.2.3 Cylindrical Coordinates

In the case of 2D cylindrical (r-z) coordinates in which the star is centered at the left edge but verti-
cal midpoint of the domain, the embiggening procedure is the same as above (with star at center
= 1) but the inputs file for restart is slightly different in that geometry.prob lo is modified in
the z- but not the r-direction. If we consider the original inputs file to look like:

• max step = 100

• amr.max level = 6

• amr.n cell = D 2D

• geometry.prob lo = 0 0

• geometry.prob hi = P 2P

• amr.ref ratio = 4 4 4 4

then an inputs file for restart would look like:

• amr.restart = newchk00050

• amr.max level = 6

• amr.n cell = D 2D

• geometry.prob lo = 0 -P

• geometry.prob hi = 2P 3P

• castro.grown factor = 2

• castro.star at center = 1

• amr.ref ratio = 2 4 4 4 4

12.2—Star at Center of Domain (star at center = 1) 67

Figure 12.1: Data from checkpoint file before and after the domain has been coarsened and
grown. This case uses star at center = 0 and ref ratio=2. The first grown example has
grown factor=2, the second has grown factor=3. In all figures the level 0 grids are shown
in white, the level 1 grids in red, the level 2 grids in yellow, and in the grown figures, the level 3
grids are in pink.

68 Chapter 12. ConvertCheckpoint

Figure 12.2: Data from checkpoint file before and after the domain has been coarsened and
grown. This case uses star at center = 0 and ref ratio=2. The first grown example has
grown factor=2, the second has grown factor=3. In all figures the level 0 grids are shown
in white, the level 1 grids in red, the level 2 grids in yellow, and in the grown figure, the level 3
grids are in pink.

CHAPTER 13

Initializing CASTRO with MAESTRO Data

13.1 Overview

We can now initialize a CASTRO simulation using data from a MAESTRO plotfile. This should
not be thought of as a restart mode, but rather a new simulation with a special initialization. In
order to use this feature, you must make sure the MAESTRO plotfile has the proper variables, add
some new parameters to your inputs file, and add a few subroutines to Prob Xd.f90. You need to
build a special executable with “USE MAESTRO INIT=TRUE”, which will add “.MAESTRO” to
the executable string. For multilevel problems, there are a few extra steps relating to the fact that
you have to supply a grids file consistent with the MAESTRO grid structure.

13.2 MAESTRO Plotfile Requirements

The MAESTRO plotfile needs to have the following variables:

• “x vel”, “y vel”, (and “z vel”, depending on dimensionality of the problem)

• “density” (castro.MAESTRO init type = 1 and 2 only)

• Optional species (such as “X(C12)”) - there is an option to not read any species from the
MAESTRO plotfile. In this case, you must make sure your code manually defines the species
cell-by-cell in the initial CASTRO data

• “tfromp”

• “pi” (castro.MAESTRO init type = 2, 3, and 4 only)

• “entropy” (castro.MAESTRO init type = 4 only)

69

70 Chapter 13. Initializing CASTRO with MAESTRO Data

Also, model cc XXXXX needs to list variables in the following order, which is the default order
found in MAESTRO/Source/base io.f90: r, base r, rho0, p0, gamma1bar, rhoh0, div coeff, psi,
tempbar, etarho cc, tempbar init.

13.3 List of Parameters

Here are the additional parameters you must add to your inputs file.

Parameter Definition Type Default
castro.MAESTRO plotfile name of the MAESTRO plotfile std::string must be set
castro.MAESTRO modelfile name of the MAESTRO “model cc” file std::string must be set
castro.MAESTRO npts model number of points in the MAESTRO model cc file int must be set
castro.MAESTRO first species name of the first species std::string must be set or else nothing will be read in
castro.MAESTRO nspec number of species in the MAESTRO plotfile std::string NumSpec in CASTRO
castro.MAESTRO cutoff density controls how we overwrite data at the edge of the star Real must be set
castro.MAESTRO init type determines how we initialize the CASTRO state int must be set
castro.MAESTRO spherical specifies planar or spherical problem int must be set

13.3.1 Examples of Usage

• castro.MAESTRO plotfile = ”wd 384 6.25e8K norotate plt120578”

• castro.MAESTRO modelfile = ”./wd 384 6.25e8K norotate plt120578/model cc 120578”

• castro.MAESTRO npts model = 1663
This is the number of points in castro.MAESTRO modelfile. Note that this is not the
same thing as “npts model”, which is the number of points in the initial model file used for
standard simulations where we do not initialize from a MAESTRO plotfile.

• castro.MAESTRO first species = “X(C12)” If you do not specify this, no species will be
read in. You can always manually specify or overwrite the species cell-by-cell later.

• castro.MAESTRO nspec = 3
If you do not specify this, it will default to the number of species in the CASTRO net-
work, “NumSpec”. We have this here because sometimes MAESTRO and CASTRO will use
different networks with different number of species.

• castro.MAESTRO cutoff density = 1.e6
The code will use this density to figure out the radial coordinate, r model start, which is the
last radial coordinate before rho0 falls below castro.MAESTRO cutoff density. It is pos-
sible to set castro.MAESTRO cutoff density to a tiny value, such that rho0 never falls
below this value, in which case we set r model start to ∞. In INITDATA MAKEMODEL,
we create a new 1D model integrating outward starting from r model start. Then, in INIT-
DATA OVERWRITE, we overwrite newly initialized CASTRO data in any cell that maps
into a radial coordinate greater than r model start by interpolating from the new 1D model.

• castro.MAESTRO init type = 2
CASTRO will read in data from the MAESTRO plotfile, and then call the EOS to make
sure that ρ, e, T , and Xk are consistent. The inputs to the EOS are based on the value of
castro.MAESTRO init type:

1. e = e(ρ, T,Xk)

13.4—New Subroutines in Prob Xd.f90 71

2. e, T = e, T (ρ, p0 + π,Xk)

3. ρ, e = ρ, e(p0 + π, T,Xk)

4. ρ, T, e = ρ, T, e(p0 + π, s,Xk)

• castro.MAESTRO spherical = 1
0 = planar; 1 = spherical.

13.4 New Subroutines in Prob Xd.f90

There are three routines that need to be added to your local copy of Prob Xd.f90. See Cas-
tro/Exec/wdconvect/Prob 3d.f90 for a standard spherical MAESTRO initialization.

1. INITDATA MAESTRO
This fills in the CASTRO state by taking the MAESTRO data, calling the EOS, and mak-
ing the proper variables conserved quantities. Specifically, we need a thermodynamically
consistent ρ, T , e, and Xk, and then algebraically compute ρu, ρe, ρE, and ρXk,

2. INITDATA MAKEMODEL
This creates a user-defined 1D initial model starting from r model start.

3. INITDATA OVERWRITE
This overwrites the initialized CASTRO data using the new 1D initial model for all cells that
map into radial coordinates greater than r model start.

13.5 Additional Notes

Note that for both single-level and multilevel MAESTRO to CASTRO initialization, the CASTRO
base grid structure does not have to match the MAESTRO base grid structure, as long as the
problem domain is the same. For example, if the coarsest level in a MAESTRO plotfile contains
643 cells divided into 8-323 grids, it is ok to use a CASTRO base grid structure with 1-643 grid,
64-163 grids, or anything else you can imagine - the grids don’t even have to be the same size. As
is normally the case, the CASTRO base grid structure is created based on the parameters in the
CASTRO inputs file, such as amr.max grid size, amr.blocking factor, etc.

13.5.1 Multilevel Restart

When initialing from a multilevel MAESTRO plotfile, there are some extra steps. First, you need
to create a CASTRO-compatible grids file from the MAESTRO plotfile. This can be done with the
AmrPostprocessing/F Src/fboxinfo.f90 utility. Compile and run this using the “--castro” option,
e.g., “fboxinfo.Linux.gfortran.exe --castro pltxxxxx | tee gr0.maestro”, to generate the CASTRO-
compatible grids file. Note that the base grid structure is still controlled by amr.max grid size,
amr.blocking factor, etc., since in C++ BoxLib, the grids file only indicates the refined grid
structure, whereas in Fortran BoxLib the grids file contains the base grid and refined grid structures.

Now, when you initialize the CASTRO simulation, you need to specify the grid file using
amr.regrid file = ”gr0 3d.128 2levels”, for example. You can happily run this now, but

72 Chapter 13. Initializing CASTRO with MAESTRO Data

note that the regridding algorithm will never be called (since CASTRO thinks it’s started a
new simulation from scratch with a grids file, thus disabling the regridding). If you wish
for the grid structure to be changed, you must do a traditional CASTRO restart from the
CASTRO-generated checkpoint file (you can still use the same “.MAESTRO” executable or an
executable built with USE MAESTRO INIT=FALSE), making sure that you do not specity
amr.regrid file (or else the grids will stay fixed). You are free to specify amr.regrid on restart,
amr.compute new dt on regrid, and amr.plotfile on restart.

Sometimes a MAESTRO plotfile will only have 1 or 2 total levels, but you ultimately want to run
a CASTRO simulation with many more levels of refinement. My recommended strategy is the
following:

1. Initialize a CASTRO simulation from the MAESTRO plotfile while preserving the exact same
grid structure and run for 10 time steps.

2. Do a traditional CASTRO restart from chk00010, but do not increase amr.max level, and
run for 10 more time steps. This allows a new grid structure with the same effective resolution
as before settle in using the C++ BoxLib regridding algorithm.

3. Do a traditional CASTRO restart from chk00020, but increase amr.max level by 1, and
run for 10 time steps.

4. Repeat the procedure from the previous step (using the most updated checkpoint of course)
as many times as desired.

CHAPTER 14

Visualization

14.1 2D and 3D

14.1.1 amrvis

Our favorite visualization tool is amrvis. We heartily encourage you to build the amrvis2d and
amrvis3d executables, and to try using them to visualize your data. A very useful feature is
View/Dataset, which allows you to actually view the numbers – this can be handy for debugging.
You can modify how many levels of data you want to see, whether you want to see the grid boxes
or not, what palette you use, etc.

If you like to have amrvis display a certain variable, at a certain scale, when you first bring up
each plotfile (you can always change it once the amrvis window is open), you can modify the
amrvis.defaults file in your directory to have amrvis default to these settings every time you run it.
The directories CoreCollapse, HSE test, Sod and Sedov have amrvis.defaults files in them. If you
are working in a new run directory, simply copy one of these and modify it.

14.1.2 VisIt

VisIt is also a great visualization tool, and it directly handles our plotfile format (which it calls
Boxlib). For more information check out visit.llnl.gov.

[Useful tip:] To use the Boxlib3D plugin, select it from File→ Open file→ Open file as type Boxlib,
and then the key is to read the Header file, plt00000/Header, for example, rather than telling to to
read plt00000.

73

74 Chapter 14. Visualization

14.2 Controlling What’s in the PlotFile

amr.plot vars =

and

amr.derive plot vars =

are used to control which variables are included in the plotfiles. The default for amr.plot vars is
all of the state variables. The default for amr.derive plot vars is none of the derived variables.
So if you include neither of these lines then the plotfile will contain all of the state variables and
none of the derived variables.

If you want all of the state variables plus entropy and pressure, for example, then set

amr.derive plot vars = entropy pressure

If you just want density and pressure, for example, then set

amr.plot vars = density

amr.derive plot vars = pressure

14.3 1D

amrvis doesn’t like 1-d plotfiles, and for those we use a 1-d plotting capability installed by Mike
Singer Castro/Util/plot1d. If you want to make xmgrace-compatible files, for example, add the
following to your inputs file:

xgraph.xmgrace file = 1

xgraph.format = xmg

xgraph.use xmgrace legend = 1

xgraph.use xmgrace title = 1

xgraph.graph = xvel x velocity 100 -1

This tells is to write a file called xvel 0000.xmgr, for example, every 100 time steps, including
all levels of data. (The last variable, -1, specifies the maximum level; if it is -1 then all levels are
used.)

14.3—1D 75

If you want to write more than one variable into a single file, then instead of setting each variable
on a separate line as in the xvel example above, you can do the following:

xgraph.graph = file name ALL 100 -1

If you specify “ALL” then

amr.plot vars =

and

amr.derive plot vars =

are used to control which variables are included. The default for amr.plot vars is all of the state
variables. The default for amr.derive plot vars is none of the derived variables. So if you include
neither of these lines then the file file name.xmg will contain all of the state variables and none of
the derived variables.

If you want all of the state variables plus entropy and pressure, for example, then set

amr.derive plot vars = entropy pressure

xgraph.graph = file name ALL 100 -1

If you just want density and pressure, for example, then set

amr.plot vars = density

amr.derive plot vars = pressure

xgraph.graph = file name ALL 100 -1

Feel free to read the routines in Castro/Util/plot1d.

CHAPTER 15

Software Framework

15.1 Code structure

The code structure in the Castro directory is as follows:

• constants : contains a file of useful constants in CGS units

• ConvertCheckpoint : a tool to convert a checkpoint file to a larger domain

• EOS : contains directories for different EOS routines

• Exec : various examples

– Sedov : run directory for the Sedov problem

– Sod : run directory for the Sod problem

– KH : run directory for the Kelvin-Helmholz problem

• Networks : contains directories for different reaction networks

• Source : source code

• UsersGuide : you’re reading this now!

• Util : a catch-all for additional things you may need

77

78 Chapter 15. Software Framework

15.2 Castro Data Structures

15.2.1 State Data

CASTRO relies on the class structure defined by BoxLib to manage the data.

In Castro.H, the enum StateType defines the different descriptors for the state data that Castro
recognizes. The main descriptors are:

• State Type: the state variables for the hydrodynamics solver.

• Rad Type: the radiation quantities (only enabled if RADIATION is defined).

• Gravity Type: the data required for the gravity solve (only enabled if GRAVITY is defined).

• Reactions Type: what is this for?

The state data is registered with BoxLib in Castro setup.cpp. We access the multifabs that carry
the data of interest by interacting with this BoxLib data-structure. Each state quantity always has
both an old and new timestate and the BoxLib class knows how to interpolate in both space and
time. We interact with the data by getting pointers to multifabs. For instance:

MultiFab& S_new = get_new_data(State_Type);

gets a pointer to the multifab containing the hydrodynamics state data at the new time (here
State Type is the enum defined in Castro.H).

We iterate over the multifabs using an iterator MFIter. This iterator knows about the locality of the
data—only the boxes on the processor will be looped over. An example loop (for the initialization,
from Castro setup.cpp would be):

for (MFIter mfi(S_new); mfi.isValid(); ++mfi)

{

const Box& bx = mfi.validbox();

const int* lo = bx.loVect();

const int* hi = bx.hiVect();

if (! orig_domain.contains(bx)) {

BL_FORT_PROC_CALL(CA_INITDATA,ca_initdata)

(level, cur_time, lo, hi, ns,

BL_TO_FORTRAN(S_new[mfi]), dx,

gridloc.lo(), gridloc.hi());

}

}

here BL TO FORTRAN is a special BoxLib macro that converts the C++ multifab into a Fortran array,
and BL FORT PROC CALL is a BoxLib macro that is used to interface with Fortran routines.

what is the purpose
of mfi.isValid()?

15.3—Setting Up Your Own Problem 79

15.2.2 Other Quantities

The following is a list of variables, routines, etc used in CASTRO. It may not be complete or even
entirely accurate; it’s mostly intended for my own use.

lo,hi: index extent of the ”grid” of data currently being handled by a CASTRO routine

domlo, domhi: index extent of the problem domain. This changes according to refinement
level: 0th refinement level will have 0, castro.max grid size, and nth level will go from 0 to cas-
tro.max grid size*(multiplying equivalent of sum)castro.ref ratio(n).

dx: cell spacing, presumably in cm, since CASTRO uses cgs units

xlo: physical location of the lower left-hand corner of the ”grid” of data currently being handled
by a CASTRO routine

bc: array that holds boundary condition of and array. Sometimes it appears of the form bc(:,:)
and sometimes bc(:,:,:). The last index of the latter holds the variable index, i.e. density, pressure,
species, etc.

EXT DIR: from BoxLib/Src/C AMRLib/BC TYPES.H:EXT DIR : data specified on EDGE
(FACE) of bndry

FOEXTRAP: from BoxLib/Src/C AMRLib/BC TYPES.H:FOEXTRAP : first order extrapola-
tion from last cell in interior CASTRO

15.3 Setting Up Your Own Problem

To define a new problem, we create a new directory under Exec/, and place in it a Prob 2d.f90 file
(or 1d/3d, depending on the dimensionality of the problem), a probdata.f90 file, the inputs and
probin files, and a Make.package file that tells the build system what problem-specific routines
exist. The simplest way to get started is to copy these files from an existing problem. Here we
describe how to customize your problem.

A typical Prob ?d.f90 routine consists of the following subroutines:

• PROBINIT

• ca initdata

• the *fill routines: The following routines handle how CASTRO fills ghostcells for specific data.
The idea is that these routines are registered in Castro setup.cpp, and called as needed. By
default, they just pass the arguments through to filcc, which handles all of the generic boundary
conditions (like reflecting, extrapolation, etc.). The specific ‘fill’ routines can then supply the

80 Chapter 15. Software Framework

problem-specific boundary conditions, which are typically just Dirichlet boundary conditions. The
code implementing these specific conditions should follow the filcc call.

– ca hypfill: This handles the boundary filling for the hyperbolic system.

– ca denfill: At times, we need to fill just the density (always assumed to be the first
element in the hyperbolic state) instead of the entire state. When the fill patch routine is
called with first comp = Density and num comp = 1, then we use ca denfill instead
of ca hypfill.

– ca grav?fill: These routines will the ghostcells with the gravitational acceleration. By
default, they will just do something like a first-order extrapolation. These are needed for
the hydro routines to have the gravitational acceleration needed for the source terms to the
interface states.

– ca reactfill

15.4 Boundaries

15.4.1 Boundaries Between Grids

Boundaries between grids are of two types. The first we call ”fine-fine”, which is two grids at the
same level. Filling ghost cells at the same level is also part of the fillpatch operation – it’s just
a straight copy from ”valid regions” to ghost cells. The second type is ”coarse-fine”, which needs
interpolation from the coarse grid to fill the fine grid ghost cells. This also happens as part of the
FillPatch operation, which is why arrays aren’t just arrays, they’re ”State Data”, which means that
the data knows how to interpolate itself (in an anthropomorphical sense). The type of interpolation
to use is defined in Castro setup.cpp as well – search for cell cons interp, for example – that’s ”cell
conservative interpolation”, i.e the data is cell-based (as opposed to node-based or edge-based) and
the interpolation is such that the average of the fine values created is equal to the coarse value from
which they came. (This wouldn’t be the case with straight linear interpolation, for example.)

A FillPatchIterator is used to loop over the grids and fill ghostcells. One should never assume
that ghostcells are valid. A key thing to keep in mind about the FillPatchIterator is that you
operate on a copy of the data—the data is disconnected from the original source. If you want to
update the data in the source, you need to explicitly copy it back. Also note: FillPatchIterator
takes a multifab, but this is not filled—this is only used to get the grid layout.

did I say that right?

simple example

15.4.2 Physical Boundaries

Physical BC Velocity Temperature Scalars
Outflow FOEXTRAP FOEXTRAP FOEXTRAP

No Slip Wall with Adiabatic Temp EXT DIR u = v = 0 REFLECT EVEN dT/dt = 0 HOEXTRAP
No Slip Wall with Fixed Temp EXT DIR u = v = 0 EXT DIR HOEXTRAP
Slip Wall with Adiabatic Temp EXT DIR un = 0, HOEXTRAP ut REFLECT EVEN dT/dn = 0 HOEXTRAP

Slip Wall with Fixed Temp EXT DIR un = 0 EXT DIR HOEXTRAP

Table 15.1: Conversions from physical to mathematical BCs

15.5—Parallel I/O 81

The boundary conditions in Table 15.1 have already been implemented in CASTRO. The table
looks cruddy–it’s copied from BoxLib/Src/C AMRLib/amrlib/BC TYPES.H. Some of that makes
more sense if there are linebreaks within the table, but I’m not sure how to do it. Here’s definitions
of some of the funnier-souding all-caps words from above:

INT DIR : data taken from other grids or interpolated

EXT DIR : data specified on EDGE (FACE) of bndry

HOEXTRAP : higher order extrapolation to EDGE of bndry

FOEXTRAP : first order extrapolation from last cell in interior

REFLECT EVEN : F(-n) = F(n) true reflection from interior cells

REFLECT ODD : F(-n) = -F(n) true reflection from interior cells

Basically, boundary conditions are imposed on ”state variables” every time that they’re ”fill-
patched”, as part of the fillpatch operation.

For example, the loop that calls CA UMDRV (all the integration stuff) starts with

for (FillPatchIterator fpi(*this, S new, NUM GROW, time, State Type, strtComp, NUM STATE);

fpi.isValid(); ++fpi)

Here the FillPatchIterator is the thing that distributes the grids over processors and makes parallel
”just work”. This fills the single patch ”fpi” , which has NUM GROW ghost cells, with data of
type ”State Type” at time ”time”, starting with component strtComp and including a total of
NUM STATE components.

The way that you tell the code what kind of physical boundary condition to use is given in Cas-
tro setup.cpp. At the top we define arrays such as ”scalar bc”, ”norm vel bc”, etc, which say which
kind of bc to use on which kind of physical boundary. Boundary conditions are set in functions
like ”set scalar bc”, which uses the scalar bc pre-defined arrays.

If you want to specify a value at a function (like at an inflow boundary), there are routines in
Prob 1d.f90, for example, which do that. Which routine is called for which variable is again defined
in Castro setup.cpp

15.5 Parallel I/O

Both checkpoint files and plotfiles are really directories containing subdirectories: one subdirectory
for each level of the AMR hierarchy. The fundamental data structure we read/write to disk is a
MultiFab, which is made up of multiple FAB’s, one FAB per grid. Multiple MultiFabs may be
written to each directory in a checkpoint file. MultiFabs of course are shared across CPUs; a single
MultiFab may be shared across thousands of CPUs. Each CPU writes the part of the MultiFab
that it owns to disk, but they don’t each write to their own distinct file. Instead each MultiFab is
written to a runtime configurable number of files N (N can be set in the inputs file as the parameter
amr.checkpoint nfiles and amr.plot nfiles; the default is 64). That is to say, each MultiFab is

82 Chapter 15. Software Framework

written to disk across at most N files, plus a small amount of data that gets written to a header
file describing how the file is laid out in those N files.

What happens is N CPUs each opens a unique one of the N files into which the MultiFab is being
written, seeks to the end, and writes their data. The other CPUs are waiting at a barrier for those
N writing CPUs to finish. This repeats for another N CPUs until all the data in the MultiFab is
written to disk. All CPUs then pass some data to CPU 0 which writes a header file describing how
the MultiFab is laid out on disk.

We also read MultiFabs from disk in a ”chunky” manner opening only N files for reading at a time.
The number N, when the MultiFabs were written, does not have to match the number N when the
MultiFabs are being read from disk. Nor does the number of CPUs running while reading in the
MultiFab need to match the number of CPUs running when the MultiFab was written to disk.

Think of the number N as the number of independent I/O pathways in your underlying parallel
filesystem. Of course a ”real” parallel filesytem should be able to handle any reasonable value of
N. The value -1 forces N to the number of CPUs on which you’re running, which means that each
CPU writes to a unique file, which can create a very large number of files, which can lead to inode
issues.

CHAPTER 16

Verification Test Problems

16.1 Hydrodynamics Test Problems

16.1.1 Sod’s Problem (and Other Shock Tube Problems)

The Exec/Sod problem directory sets up a general one-dimensional shock tube. The left and right
primitive-variable states are specified and the solution evolves until a user-specified end time. For
a simple discontinuity, the exact solution can be found from an exact Riemann solver. For this
problem, the exact solutions were computed with the exact Riemann solver from Toro [12], Chapter
4.

16.1.1.1 Sod’s Problem

The Sod problem [10] is a simple shock tube problem that exhibits a shock, contact discontinuity,
and a rarefaction wave. The initial conditions are:

ρL = 1
uL = 0
pL = 1

ρR = 0.125
uR = 0
pR = 0.1

(16.1)

The gamma law equation of state is used with γ = 1.4. The system is evolved until t = 0.2 s. Setups
for 1-, 2-, and 3-d are provided. The following inputs files and probin files setup the Sod’s problem:

For multi-dimensional runs, the directions transverse to the jump are kept constant. We use a CFL
number of 0.9, an initial timestep shrink (castro.init shrink) of 0.1, and the maximum factor
by which the timestep can increase (castro.change max) of 1.05.

83

84 Chapter 16. Verification Test Problems

inputs file probin file description

inputs-sod-x probin-sod-x Sod’s problem along x-direction
inputs-sod-y probin-sod-y Sod’s problem along y-direction
inputs-sod-z probin-sod-z Sod’s problem along z-direction

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x/y/z

x
y
z

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x/y/z

x
y
z

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x/y/z

x
y
z

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x/y/z

x
y
z

Figure 16.1: Castro solution for Sod’s problem run in 3-d, with the newest ppm limiters, along
the x, y, and z axes. A coarse grid of 32 zones in the direction of propagation, with 2 levels of
refinement was used. The analytic solution appears as the red line.

Figure 16.1 shows the Castro solution using the newest PPM limiters compared to the analytic
solution, showing the density, velocity, pressure, and internal energy. Figure 16.2 is the same as
Figure 16.1, but with the piecewise-linear Godunov method with limiters, shown for comparison.

The Verification subdirectory includes the analytic solution for the Sod problem sod-exact.out,
with γ = 1.4. 1-d slices can be extracted from the Castro plotfile using the fextract tool from
AmrPostprocessing/F Src/. The steps to generate this verification plot with Castro are:

1. in Exec/Sod, build the Castro executable in 3-d

2. run the Sod problem with Castro in the x, y, and z directions:
./Castro3d.Linux.Intel.Intel.ex inputs-sod-x

./Castro3d.Linux.Intel.Intel.ex inputs-sod-y

./Castro3d.Linux.Intel.Intel.ex inputs-sod-z

3. build the fextract tool in AmrPostprocessing/F Src/.

4. run fextract on the Castro output to generate 1-d slices through the output:
fextract3d.Linux.Intel.exe -d 1 -s sodx.out -p sod x plt00034

fextract3d.Linux.Intel.exe -d 2 -s sody.out -p sod y plt00034

fextract3d.Linux.Intel.exe -d 3 -s sodz.out -p sod z plt00034

5. copy the sodx/y/z.out files into the Verification directory.

16.1—Hydrodynamics Test Problems 85

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x/y/z

x
y
z

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x/y/z

x
y
z

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x/y/z

x
y
z

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x/y/z

x
y
z

Figure 16.2: Castro solution for Sod’s problem run in 3-d, with the piecewise-linear Godunov
method with limiters, along the x, y, and z axes. A coarse grid of 32 zones in the direction of
propagation, with 2 levels of refinement was used. The analytic solution appears as the red line.

6. in Verification run the gnuplot script sod 3d.gp as:
gnuplot sod 3d.gp

This will produce the figure sod 3d.eps.

16.1.1.2 Double Rarefaction

The double rarefaction is the “Test 2” problem described by Toro [12], Chapter 6. In this test, the
center of the domain is evacuated as two rarefaction waves propagate in each direction, outward
from the center. It is difficult to get the internal energy to behave at the center of the domain
because we are creating a vacuum. The initial conditions are:

ρL = 1
uL = −2
pL = 0.4

ρR = 1
uR = 2
pR = 0.4

(16.2)

The gamma law equation of state is used with γ = 1.4. The system is evolved until t = 0.15 s.
Setups for 1-, 2-, and 3-d are provided. The following inputs files and probin files setup the Sod’s
problem:

inputs file probin file description

inputs-test2-x probin-test2-x Double rarefaction problem along x-direction
inputs-test2-y probin-test2-y Double rarefaction problem along y-direction
inputs-test2-z probin-test2-z Double rarefaction problem along z-direction

We use a CFL number of 0.8, an initial timestep shrink (castro.init shrink) of 0.1, and the

86 Chapter 16. Verification Test Problems

maximum factor by which the timestep can increase (castro.change max) of 1.05. The PPM
solver with the new limiters are used.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x/y/z

x
y
z

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x/y/z

x
y
z

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x/y/z

x
y
z

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x/y/z

x
y
z

Figure 16.3: Castro solution for the double rarefaction problem run in 3-d, along the x, y, and
z axes. A coarse grid of 32 zones in the direction of propagation, with 2 levels of refinement was
used. The analytic solution appears as the red line.

Figure 16.3 shows the Castro output, run along all 3 coordinate axes in 3-d, compared to the
analytic solution.

The comparison to the analytic solution follows the same procedure as described for the Sod’s
problem above. The gnuplot script test2 3d.gp will generate the figure, from the 1-d slices created
by fextract named test2x.out, test2y.out, and test2z.out.

16.1.1.3 Strong Shock

The strong shock test is the “Test 3” problem described by Toro [12], Chapter 6. In this test, a
large pressure jump at the initial interface creates a very strong rightward moving shock, followed
very closely by a contact discontinuity. The initial conditions are:

ρL = 1
uL = 0
pL = 1000

ρR = 1
uR = 0
pR = 0.01

(16.3)

The gamma law equation of state is used with γ = 1.4. The system is evolved until t = 0.012 s.
Setups for 1-, 2-, and 3-d are provided. The following inputs files and probin files setup the Sod’s
problem:

16.1—Hydrodynamics Test Problems 87

inputs file probin file description

inputs-test3-x probin-test3-x Strong shock problem along x-direction
inputs-test3-y probin-test3-y Strong shock problem along y-direction
inputs-test3-z probin-test3-z Strong shock problem along z-direction

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x/y/z

x
y
z

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x/y/z

x
y
z

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x/y/z

x
y
z

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x/y/z

x
y
z

Figure 16.4: Castro solution for the strong shock problem run in 3-d, along the x, y, and z axes.
A coarse grid of 32 zones in the direction of propagation, with 2 levels of refinement was used. The
analytic solution appears as the red line.

We use a CFL number of 0.9, an initial timestep shrink (castro.init shrink) of 0.1, and the
maximum factor by which the timestep can increase (castro.change max) of 1.05. The PPM
solver with the new limiters are used.

Figure 16.4 shows the Castro output, run along all 3 coordinate axes in 3-d, compared to the
analytic solution.

The comparison to the analytic solution follows the same procedure as described for the Sod’s
problem above. The gnuplot script test3 3d.gp will generate the figure, from the 1-d slices created
by fextract named test3x.out, test3y.out, and test3z.out.

16.1.2 Sedov Problem

The Sedov (or Sedov-Taylor) blast wave is a standard hydrodynamics test problem. A large amount
of energy is placed into a very small volume, driving a spherical (or cylindrical in 2-d Cartesian
coordinates) blast wave. Analytic solutions were found by Sedov [8].

A cylindrical blast wave (e.g. a point explosion in a 2-d plane) can be modeled in 2-d Cartesian
coordinates. A spherical blast wave can be modeled in 1-d spherical, 2-d axisymmetric (cylindrical

88 Chapter 16. Verification Test Problems

r-z), or 3-d Cartesian coordinates. This provides a good test on the geometric factors in the
hydrodynamics solver. We use a publically available code, sedov3.f [4], to generate the analytic
solutions.

The Castro implementation of the Sedov problem is in Exec/Sedov. A number of different in-
puts/probin files are provided, corresponding to different Sedov/Castro geometries. The main ones
are:

inputs file probin file description
inputs.1d.sph probin.1d.sph Spherical Sedov explosion modeled in

1-d spherical coordinates

inputs.2d.sph in cylcoords probin.2d.sph in cylcoords Spherical Sedov explosion modeled
in 2-d cylindrical (axisymmetric)
coordinates

inputs.2d.cyl in cartcoords probin.2d.cyl in cartcoords Cylindrical Sedov explosion modeled
in 2-d Cartesian coordinates

inputs.3d.sph probin.3d.sph Spherical Sedov explosion modeled in
3-d Cartesian coordinates

Table 16.1: Sedov inputs files

In the Sedov problem, the explosion energy, Eexp (in units of energy, not energy/mass or en-
ergy/volume) is to be deposited into a single point, in a medium of uniform ambient density,
ρambient, and pressure, pambient. Initializing the problem can be difficult because the small volume
is typically only a cell in extent. This can lead to grid imprinting in the solution. A standard
solution (see for example [6] and the references therein) is to convert the explosion energy into a
pressure contained within a certain volume, Vinit, of radius rinit as

pinit =
(γ − 1)Eexp

Vinit
. (16.4)

This pressure is then deposited in all of the cells where r < rinit.

To further minimize any grid effects, we do subsampling in each zone: each zone is divided it into
Nsub subzones in each coordinate direction, each subzone is initialized independently, and then the
subzones are averaged together (using a volume weighting for spherical or cylindrical/axisymmetric
Castro grids) to determine the initial state of the full zone.

For these runs, we use ρambient = 1, pambient = 10−5, Eexp = 1, rinit = 0.01, and Nsub = 10. A base
grid with 32 zones in each coordinate direction plus 3 levels of refinement is used (the finest mesh
would coorespond to 256 zones in a coordinate direction). The domain runs from 0 to 1 in each
coordinate direction.

Analysis routines for the Sedov problem are provided in AmrPostprocessing/F Src/Castro hydro.
These routines will average the Castro solution over angles, using the proper geometric weighting,
to produce an average profile as a function of radius. The following routines correspond to the
inputs files described above:

16.1—Hydrodynamics Test Problems 89

inputs file analysis routine
inputs.1d.sph fsedov1d.f90

inputs.2d.sph in cylcoords fsedov2d sph in cylcoords.f90

inputs.2d.cyl in cartcoords fsedov2d cyl in cartcoords.f90

inputs.3d.sph fsedov3d sph.f90

Table 16.2: Analysis routines for Sedov

16.1.2.1 Spherical Blast Wave

A spherical Sedov explosion can be modeled in 1-d spherical, 2-d cylindrical (axisymmetric), or 3-d
Cartesian coordinates, using the inputs files described in Table 16.1. A 1-d radial profile can be
extracted using the appropriate fsedov routine, as listed in Table 16.2. For example, to run and
process the 2-d cylindrical Sedov explosion, one would do:

1. in Exec/Sedov, build the Castro executable in 2-d

2. run the spherical Sedov problem with Castro in 2-d cylindrical coordinates:
./Castro2d.Linux.Intel.Intel.ex inputs.2d.sph in cylcoords

3. build the fsedov2d sph in cylcoords tool in AmrPostprocessing/F Src/Castro hydro.

4. run fsedov2d sph in cylcoords on the Castro output to generate 1-d radial profiles:
fsedov2d sph in cylcoords.Linux.Intel.exe -s sedov 2d sph in cyl.out \

-p sedov 2d sph in cyl plt00246

A similar procedure can be used for the 1-d and 3-d spherical Sedov explosions (with the
output named sedov 1d sph.out and sedov 3d sph.out respectively). Once this is done, the
sedov sph.gp gnuplot script can be used to make a plot comparing the 3 solutions to the analytic
solution, spherical sedov.dat.

Figure 16.5 shows the comparison of the 3 Castro spherical Sedov explosion simulations to the
analytic solution.

16.1.2.2 Cylindrical Blast Wave

16.1.3 Rayleigh-Taylor

2D. Domain size 0.5 by 1.0. 256 by 512 cells, single level calculation. Periodic in x, solid walls on
top and bottom in y. Gamma law gas with γ = 1.4, no reactions. Zero initial velocity. Constant
|g| = 1. The density profile is essentially ρ = 1 on bottom, ρ = 2 on top, but with a perturbation.
A single-mode perturbation is constructed as:

ỹ(x) = 0.5 + 0.01
cos(4πx) + cos(4π(Lx − x))

2
(16.5)

We note that the symmetric form of the cosine is done to ensure that roundoff error does not
introduce a left-right asymmetry in the problem. Without this construction, the R-T instability
will lose its symmetry as it evolves. This then applied to the interface with a tanh profile to smooth
the transition between the high and low density material:

ρ(x, y) = 1 + 0.5

[
1 + tanh

(
y − ỹ(x)

0.005

)]
(16.6)

90 Chapter 16. Verification Test Problems

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2 0.25 0.3

de
ns

ity

r

1-d
2-d
3-d

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3

ve
lo

ci
ty

r

1-d
2-d
3-d

 0

 5

 10

 15

 20

 25

 30

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
es

su
re

r

1-d
2-d
3-d

10-6
10-4
10-2
100
102
104
106
108

1010
1012
1014

 0 0.05 0.1 0.15 0.2 0.25 0.3
in

te
rn

al
 e

ne
rg

y
r

1-d
2-d
3-d

Figure 16.5: Castro solution for the Sedov blast wave problem run in 1-d spherical, 2-d axisymmet-
ric, and 3-d Cartesian coordinates. Each of these geometries produces a spherical Sedov explosion.

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

de
ns

ity

r

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5

ve
lo

ci
ty

r

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

pr
es

su
re

r

10-6

10-4

10-2

100

102

104

106

108

1010

 0 0.1 0.2 0.3 0.4 0.5

in
te

rn
al

 e
ne

rg
y

r

Figure 16.6: Castro solution for the Sedov blast wave problem run in 2-d Cartesian coordinates.
This corresponds to a cylindrical Sedov explosion.

Hydrostatic pressure with p = 5.0 at bottom of domain, assuming ρ = 1 on the lower half of the
domain, and ρ = 2 on the upper half and no density perturbation. We run to t = 2.5 with piecewise

16.2—Gravity Test Problems 91

linear, old PPM, and new PPM. CFL=0.9. See Figure 16.7.

Figure 16.7: Rayleigh-Taylor with different PPM types.

16.2 Gravity Test Problems

16.3 Radiation Test Problems

There are two photon radiation solvers in Castro—a gray solver and a multigroup solver. The
gray solver follows the algorithm outlined in [3]. We use the notation described in that paper. In
particular, the radiation energy equation takes the form of:

∂ER
∂t

= ∇ ·
(
cλ(ER)

κR
∇ER

)
+ κP (4σT 4 − cER) (16.7)

Here, ER is the radiation energy density, κR is the Roseland-mean opacity, κP is the Planck-mean
opaciy, and λ is a quantity ≤ 1/3 that is subjected to limiting to keep the radiation field causal.
Castro allows for κR and κP to be set independently as power-laws.

92 Chapter 16. Verification Test Problems

16.3.1 Light Front

The light front problem tests the ability of the radiation solver to operate in the free-streaming
limit. A radiation front is estabilished by initializing one end of the computational domain with
a finite radiation field, and zero radiation field everywhere else. The speed of propagation of the
radiation front is keep in check by the flux-limiters, to prevent it from exceeding c.

16.3.2 Diffusion of a Gaussian Pulse

The diffusion of a Gaussian pulse problem tests the diffusion term in the radiation energy equation.
The radiation energy density is initialized at time t = t0 to a Gaussian distribution:

ER = (ER)0 exp

{
− 1

4Dt0
|r − r0|2

}
. (16.8)

As the radiation diffuses, the overall distribution will remain Gaussian, with the time-dependent
solution of:

ER = (ER)0
t0

t0 + t
exp

{
− 1

4D(t0 + t)
|r − r0|2

}
(16.9)

16.3.3 Radiation Source Problem

The radiation source problem tests the coupling between the radiation field and the gas energy
through the radiation source term. The problem begins with the radiation field and gas temperature
out of equilibrium. If the gas is too cool, then the radiation field will heat it. If the gas is too
hot, then it will radiate and cool. In each case, the gas energy and radiation field will evolve until
thermal equilibrium is achieved.

Our implementation of this problem follows that of [11].

16.3.4 Radiating Sphere

The radiating sphere is a multigroup radiation test problem. A hot sphere is centered at the
origin in a spherical geometry. The spectrum from this sphere follows a Planck distribution. The
ambient medium is at a much lower temperature. A frequency-dependent opacity makes the domain
optically thin for high frequecies and optically thick for low frequency. At long times, the solution
will be a combination of the blackbody radiation from the ambient medium plus the radiation that
propagated from the hot sphere. An analytic solution exists [2] which gives the radiation energy
as a function of energy group at a specified time and distance from the radiating sphere.

Our implementation of this problem is in Exec/RadSphere and follows that of [11]. The routine
that computes the analytic solution is provided as analytic.f90.

16.4 Regression Testing

An automated regression test suite for Castro (or any BoxLib-based code) written in Python exists
in Parallel/util/regtests/ as test.py. The test suite consists of a set of problem definitions

16.4—Regression Testing 93

102

103

104

105

106

107

108

109

10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5

ρe
 (

er
g/

cm
3)

time (s)

analytic heating solution
Castro heating solution

analytic cooling solution
Castro cooling solution

Figure 16.8: Castro solution for radiating source test problem. Heating and cooling solutions are
shown as a function of time, compared to the analytic solution. The gray photon solver was used.

1.0 x 10-90

1.0 x 10-80

1.0 x 10-70

1.0 x 10-60

1.0 x 10-50

1.0 x 10-40

1.0 x 10-30

1.0 x 10-20

1.0 x 10-10

1.0 x 100

1.0 x 1014 1.0 x 1015 1.0 x 1016 1.0 x 1017 1.0 x 1018 1.0 x 1019 1.0 x 1020

E
ra

d
(e

rg
/c

m
3)

nu (Hz)

analytic solution
Castro solution

Figure 16.9: Castro solution for radiating sphere problem, showing the radiation energy density
as a function of energy group. This test was run with 64 photon energy groups.

(the Castro problem + their inputs/probin files, etc.). When the suite is run the first time, the
plotfiles created at the end of each problem’s executation is stored as a benchmark. After this

94 Chapter 16. Verification Test Problems

Figure 16.10: Main test suite results page. Each row indicates a single test suite run, arranged
by date, and each column indicates a different test problem. Note: this page is from the Maestro

code, but a Castro test suite run will produce similar output.

initialization, each subsequent run of the test suite compares the current output of the code, level-
by-level and zone-by-zone to the stored benchmarks (using the fcompare.f90 routine in from
AmrPostprocessing/F Src/. Any differences are flagged as errors. A web page report is generated
by the test suite and provides a history of the regression testing. Single-processor and parallel test
problems, compilation tests, and testing restarting from a checkpoint file are supported.

16.4.1 Test Suite Inputs File

The inputs file for the test suite separates the problems into blocks. The header of a problem block
has the form [problem-name]. Beneath each problem block, there are a number of options set for
each problem. A separate heading, [main], is used for the suite-wide options.

16.4—Regression Testing 95

An example of the main block from Castro-tests.ini is:

[main]

sourceDir = /work/zingale/test/Castro/

testTopDir = /work/zingale/test/Castro/

compareToolDir = /work/zingale/test/AmrPostprocessing/F_Src/

helmeosDir = /work/zingale/test/Castro/EOS/helmeos/

sourceTree = Parallel

COMP = gcc

FCOMP = gfortran

suiteName = Castro

MPIcommand = mpiexec -host @host@ -n @nprocs@ @command@

MPIhost = node1

The first group of options define the necessary paths. Here, sourceDir points to the top-level direc-
tory, which is expected to contain the Parallel and fParallel subdirectories. testTopDir refers
to the directory that the suite should use as its root directory for output—usually this is the same
as sourceDir. The fcompare.f90 comparison tool is expected to be found in compareToolDir.
Finally, helmeosDir lists the path to the helm table.dat file used by the general stellar equation
of state.

Next, we set sourceTree to Parallel, indicating that Castro is built using the C++ BoxLib
framework. (Maestro uses the Fortran 95 BoxLib framework, and therefore would set sourceTree
to fParallel). This option tells the test suite what build system to use.

COMP and FCOMP tell the test suite which C++ and Fortran compilers to use. These override what
is listed in any GNUmakefile to ensure that the compiler stays consistent in the tests.

The suiteName option simply tells the test suite what name to prefix to the output directories. It
does not need to match the program name.

Finally, MPIcommand lists the generic manner in which to run an MPI program on the target system.
The string @host@ in the MPIcommand will be substituted by the MPIhost string by the test suite.
Similarly the @nprocs@ string will be substituted by the number of processors, which is set on a
problem-by-problem basis. Finally, the MPIcommand should include the string @command@, which is
where the Castro executable and inputs file will be substituted. For single processor runs, these
options are ignored.

Each problem to be run by the test suite gets its own block. For example, a Sod’s problem test
might look like:

[Sod-x]

buildDir = Castro/Exec/Sod/

inputFile = inputs-sod-x

probinFile = probin-sod-x

needs_helmeos = 0

dim = 3

restartTest = 0

96 Chapter 16. Verification Test Problems

useMPI = 0

compileTest = 0

doVis = 0

Here Sod-x contained inside the [] is the name of the problem, as the test suite will refer to
it. buildDir is the path beneath sourceDir where the make command should be executed. The
inputs file and probin file are given by inputFile and probinFile, which should be relative to the
buildDir. The dimensionality is specified by dim.

A number of options are available:

• If the general stellar equation of state is used, then needs helmeos should be set to 1 to
ensure that the EOS table is copied into the run directory.

• If the test is to be run in parallel, the useMPI should be 1 and numprocs should give the
number of processors.

• To test the compilation of the problem only (and skip running), set compileTest to 1.

• To test the ability of the code to restart, set restartTest to 1. Also set restartFileNum

to the number of the checkpoint file to restart from. The suite will run the problem as usual
and then restart from the specified checkpoint and run to completion again. The output from
the initial run will then be compared to the output from the restart. In a restart test, there
is no stored benchmark.

• To add a simple visualization to the test suite webpage, set doVis to 1, and set visVar to
the name of the plotfile variable to visualize. An image of that field from the last plotfile will
be appended to the problem’s test webpage.

16.4.2 Initializing the Test Suite

The first time you run the test suite there are no benchmark files to compare to. Once you generate
an inputs file, as described above, you would simply run the suite as:

./test.py --make benchmarks "initial run" ./Castro tests.ini

The string following --make benchmarks is simply a comment that will be added to the web report.
This command creates three output directories, using the suiteName as the prefix.

• suiteName-tests is where the tests are run. Each time the test suite is run, a subdirectory,
based on the date, is created, with a subdirectory for each test. All the files necessary to run
the test are copied into the test subdirectory.

• suiteName-web is where the web-based reports for the test are generated. The master web-
page is suiteName-web/index.html.

• suiteName-benchmarks is where the test benchmark files are stored. This are used for com-
parison to the current output.

16.4.3 Regular Use

Once the initial benchmarks are created, you can compare the current version of the code to the
stored results by simply doing:

16.4—Regression Testing 97

Figure 16.11: The test suite output for a single day’s run. Each row indicates a separate test,
showing whether they passed or failed. Clicking on the test name will give more information about
that particular test on that day. Note: this page is from the Maestro code, but a Castro test suite
run will produce similar output.

./test.py ./Castro tests.ini

This will do a CVS update, generate ChangeLog files listing all of the CVS comments for the code,
build the test comparison tools, and then loop over each test, building and running the executable
and comparing the output to the benchmarks.

Upon completion of all the runs, a web page for this invocation of the test suite will be generated
(see figure 16.11), as well as pages showing the details for each of the problems run. Test failures
indicate that the current output does not match the stored benchmarks.

98 Chapter 16. Verification Test Problems

16.4.4 Updating Benchmarks

A test failure means that the current version of the code gives a different answer than the stored
benchmark. A test can fail either because a bug was introduced into the code or a bug was fixed
or new feature introduced.

If a bug was introduced into the code recently, then by examing the test history you can determine
the time period in which the bug was introduced. The ChangeLog.BoxLib and ChangeLog.Castro

files linked to on each test date’s webpage will list all the changes committed to git up to that
point, which is useful for tracking down the bug. Once the bug is fixed, rerunning the suite should
generate a ‘pass’.

If a bug was fixed or a new feature was introduced, and you are confident that the latest output is
correct, then you can tell the test suite to update the benchmarks. If you want to do this for all
the test problems, you would do:

./test.py --make benchmarks "X bug fixed" ./Castro tests.ini

where the string after “--make benchmarks” is a note that is listed on the regression suite web
page describing the reason for the benchmark update. Subsequent runs of the test suite will use
the new benchmarks. If you only want to update the benchmarks of a single test, then you can
use the “--single test test” flag on the commandline, where test is the name of the test to
update.

CHAPTER 17

Managing Jobs on Jaguar

17.1 Automatic Restarting and Archiving of Data

The submission script jaguar.run and shell script process.jaguar in Exec/job scripts/ are
designed to allow you to run CASTRO with minimal interaction, while being assured that the data
is archived to HPSS on the NCCS machines.

To use the scripts, first create a directory in HPSS that has the same name as the directory on
lustre you are running in (just the directory name, not the full path). E.g. if you are running in a
directory called Castro run, then do:

hsi

mkdir Castro_run

The script process.jaguar is called from jaguar.run and will run in the background and con-
tinually wait until checkpoint or plotfiles are created (actually, it always leaves the most recent
one alone, since data may still be written to it, so it waits until there are more than one in the
directory).

Then the script will use htar to archive the plotfiles and checkpoints to HPSS. If the htar com-
mand was successful, then the plotfiles are copied into a plotfile/ subdirectory. This is actually
important, since you don’t want to try archiving the data a second time and overwriting the stored
copy, especially if a purge took place.

Additionally, if you have the path to the ftime executable set in the script (ftime.f90 lives in
AmrPostprocessing/F Src/), then the script will create a file called ftime.out that lists the name
of the plotfile and the corresponding simulation time.

Finally, right when the job is submitted, the script will tar up all of the diagnostic files created by
diag.f90 and archive them on HPSS. The .tar file is given a name that contains the date-string

99

100 Chapter 17. Managing Jobs on Jaguar

to allow multiple archives to co-exist.

This really allows you to run the job and have all of the data stored long term automatically. This
way you don’t need to worry about filesystem purges. It seems to work well.

Also, the jaguar.run submission script has code in it that will look at the most recently generated
checkpoint files, make sure that they were written out correctly (it looks to see if there is a Header
file, since that is the last thing written), and automatically set the --restart flag on the run line
to restart from the most recent checkpoint file.

This allows you to job-chain a bunch of submission and have them wait until the previous job
finished and then automatically queue up:

qsub -W depend=afterany:<JOB-ID> <QSUB SCRIPT>

where <JOB-ID> is the id number of the job that must complete before the new submission runs
and QSUB SCRIPT is the submission script (e.g. jaguar.run). This way you can queue up a bunch
of runs and literally leave things alone and it will restart from the right place automatically and
store the data as it is generated.

When process.jaguar is running, it creates a lockfile (called process.pid) that ensures that
only one instance of the script is running at any one time. Sometimes if the machine crashes, the
process.pid file will be left behind, in which case, the script aborts. Just delete that if you know
the script is not running.

Analogous scripts exist for running on Atlas, with the same general procedure. The command to
chain a job on atlas is:

msub -l depend=<JOB-ID> <MSUB SCRIPT>

where, again, <JOB-ID> is the id number of the job that must complete before the current submission
runs and <MSUB SCRIPT> is the job submission script (e.g. atlas.run).

CHAPTER 18

Scaling

With the new flurry of interest in the scaling behavior of CASTRO, we’ve run some tests on
Franklin.

18.1 Sod Problem in 3D

We ran the Sod problem (inputs-test2-x) for 10 time steps with max level = 0 on 4, 32, 256, 2048
and 16384 processors. This is a gamma-law gas with no reactions and one species. On 4 processors
the base grid was 512x128x128; for each factor of 8 increase in processors we doubled the number of
cells in each direction. We set max grid size = 64 for all cases, resulting in 256 grids per processor.
(Thus for perfect scaling we would expect this plot to be flat.)

18.2 White Dwarf in 3D

This test was performed on 6/1/09 using ScalingTest/inputs.nog, inputs.g3, inputs.g5, inputs.g3.2levels,
and inputs.g5.2levels on jaguarpf. Here we interpolated a 1D initial model of a white dwarf onto a
3D Cartesian grid and ran 5 time steps. This problem used the Helmholtz EOS with no reactions,
no thermal diffusion, and three species.

We ran this problem on 8, 64, 512, 4096, 13824, 32768, and 64000 processors. The base grid
size, respectively, was 1283, 2563, 5123, 10243, 15363, 20483, and 25603. We ran with no gravity
(castro.do grav = 0), gravity type 3 (Poisson solver using multigrid) and gravity type 5 (1D inte-
gration of the averaged radial density to define a monopole approximation for gravity), each with
max level=0. We also ran with gravity types 3 and 5 with max level=1. The fine grid structure
had the exact same grid structure as the coarse level and was centered in the domain. For all cases

101

102 Chapter 18. Scaling

Figure 18.1: Scaling behavior of Sod problem on franklin.nersc.gov

max grid size = 64, so there was 1 processor per grid per level. Thus for perfect scaling we would
expect this plot to be flat.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

6400032768138244096512648

A
ve

ra
ge

 T
im

e
pe

r
T

im
e

S
te

p
(s

ec
on

ds
)

Number of Processors

Scaling Behavior of ScalingTest Problem on jaguarpf.ccs.ornl.gov

No Gravity
Poisson Gravity

Monopole Approximation
Poisson Gravity; 2 levels

Monopole Approximation; 2 levels

Figure 18.2: Scaling behavior of ScalingTest problem on jaguarpf.ccs.ornl.gov

CHAPTER 19

Suggestions, Warnings, and Gotchas

1. 2/12/09: If running on more than 64 processors on pleiades.ucsc.edu, you must set

amr.plot nfiles = NUMBER

amr.checkpoint nfiles = NUMBER

where NUMBER is a number greater than or equal to the number of processors (putting a
large integer here is fine). The default value for plot nfiles and checkpoint nfiles is 64, so if
you are running on 64 or fewer processors you are ok.

There is a problem with writing to the file system on pleiades. We have not yet been able to
come up with a fix but this appears to be a good solution for now.

2. 2/2/09: Intel version 10.1.015 for Fortran has a known bug when run in non-DEBUG mode.
We’ve tried the new version 11 as well and parts of the code no longer compile. So beware
the Intel compilers. Best suggestion at this point is to return to version 9.

3. 1/25/09: on franklin.nersc.gov, the PathScale compiler with full optimization appears to have
bug. Please use PGI for now, or reduce the optimization from -O to -O1 with PathScale.

4. 1/25/09: Very rough estimate on franklin– for a code with 1 species, one can run a 2563

calculation on 16 processors but not 8. Keep this in mind as you choose the number of
processors for a given job. Suggested settings for large 3-d runs: blocking factor = 16,
max grid size = 32.

103

104 Chapter 19. Suggestions, Warnings, and Gotchas

19.1 Compilers

This is a brief collection of our experiences with compilers on various machines. This is not an
exhaustive list.

19.1.1 Those that compile...

Machine Compiler Modules Remarks

hopper PathScale PrgEnv-pathscale/3.1.61(default) Date: 1/12/12
pathscale/4.0.9

PGI PrgEnv-pgi/3.1.61(default) Date: 1/12/12
pgi/11.7.0(default)

titan & blue waters Cray PrgEnv-craye/4.1.20(default) Date: 1/23/13
cce/8.1.2

Note: Cray compilers version 8.1.2 need the -hnopgas runtime flag to be set.

19.1.2 Those that don’t compile...

Machine Compiler Modules Remarks

hopper PathScale PrgEnv-pathscale/3.1.61(default) Date: 1/12/12
pathscale/3.2.99(default)

titan & blue waters Cray PrgEnv-cray/4.1.20(default)
cce/8.1.1(default) Date: 1/23/13

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

[2] F. Graziani. The prompt spectrum of a radiating sphere: Benchmark solutions for diffusion
and transport. In F. Graziani, editor, Computational Methods in Transport: Verification and
Validation, number 62 in Lecture Notes in Computational Science and Engineering, pages
151–167. Springer, 2008.

[3] L. H. Howell and J. A. Greenough. Radiation diffusion for multi-fluid Eulerian hydrodynamics
with adaptive mesh refinement. Journal of Computational Physics, 184:53–78, January 2003.

[4] J. R. Kamm and F. X. Timmes. submitted to ApJ supplement, May 2007, see
http://cococubed.asu.edu/code pages/sedov.shtml.

[5] R. Kippenhahn and A. Weigert. Stellar Structure and Evolution. Springer, 1990.

[6] M. Omang, S. Børve, and J. Trulsen. SPH in spherical and cylindrical coordinates. Journal
of Computational Physics, 213:391–412, March 2006.

[7] M. Reinecke, W. Hillebrandt, J. C. Niemeyer, and A Gröbl. A new model for deflagration
fronts in reactive fluids. Astronomy and Astrophysics, 347:724–733, May 1999.

[8] L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, 1959. trans-
lated from the 4th Russian Ed.

[9] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, 1999.

[10] G. A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws. Journal of Computational Physics, 27:1–31, April 1978.

[11] F. D. Swesty and E. S. Myra. A Numerical Algorithm for Modeling Multigroup Neutrino-
Radiation Hydrodynamics in Two Spatial Dimensions. Astrophysical Journal Supplement,
181:1–52, March 2009.

105

106 REFERENCES

[12] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 2nd
edition, 1997.

[13] Y. B. Zeldovich and D. Novikov. Relativistic astrophysics. Vol.1: Stars and relativity. Univer-
sity of Chicago Press, 1971.

	list of figures
	list of tables
	Introduction
	Getting Started
	Downloading the Code
	Building the Code
	Running the Code
	Visualization of the Results

	Inputs Files
	Problem Geometry
	List of Parameters
	Examples of Usage

	Domain Boundary Conditions
	List of Parameters
	Notes
	Examples of Usage

	Resolution
	List of Parameters
	Examples of Usage

	Tagging
	List of Parameters
	Notes

	Regridding
	Overview
	List of Parameters
	Notes
	Examples of Usage
	How Grids are Created

	Simulation Time
	List of Parameters
	Notes
	Examples of Usage

	Time Step
	List of Parameters
	Examples of Usage

	Subcycling
	List of Parameters
	Examples of Usage

	Restart Capability
	List of Parameters
	Notes
	Examples of Usage

	Controlling PlotFile Generation
	List of Parameters
	Notes
	Examples of Usage

	Screen Output
	List of Parameters
	Notes
	Examples of Usage

	Gravity
	List of Parameters
	Notes

	Diffusion
	List of Parameters
	Notes

	Rotation
	List of Parameters
	Notes

	Physics
	List of Parameters
	Notes

	Units and Constants
	Units and Constants

	Equations
	Conservation Forms
	Primitive Forms

	Gravity
	Types of Approximations
	GR correction

	Rotation
	Coordinate transformation to rotating frame
	Momentum equation in rotating frame
	Energy equations in rotating frame
	Switching to the rotating reference frame

	Single-Level Flow Chart
	Castro::advance()
	Advection Step
	Compute Primitive Variables
	Edge State Prediction
	Riemann Problem
	Compute Fluxes and Update

	Level Sets
	Introduction
	An Example

	Terminology
	Functions
	INITPHI
	ADVANCE
	LSCFL
	PHIUPD
	REINIT
	FASTMARCH
	UPDATE(i)
	EVAL(i)
	FASTMARCH2
	UPDATE2(i)
	EVAL2(i)

	Heap Sorting
	ADDNODE
	UPDATENODE
	RMVNODE

	Future Work

	AMR
	Synchronization Algorithm

	Equation of State and Burning Network
	Equation of State
	Burning Network

	ConvertCheckpoint
	Star in Corner (star_at_center = 0)
	Converting the Checkpoint File
	Restarting from a Grown Checkpoint File

	Star at Center of Domain (star_at_center = 1)
	Converting the Checkpoint File
	Restarting from a Grown Checkpoint File
	Cylindrical Coordinates

	Initializing CASTRO with MAESTRO Data
	Overview
	MAESTRO Plotfile Requirements
	List of Parameters
	Examples of Usage

	New Subroutines in Prob_Xd.f90
	Additional Notes
	Multilevel Restart

	Visualization
	2D and 3D
	amrvis
	VisIt

	Controlling What's in the PlotFile
	1D

	Software Framework
	Code structure
	Castro Data Structures
	State Data
	Other Quantities

	Setting Up Your Own Problem
	Boundaries
	Boundaries Between Grids
	Physical Boundaries

	Parallel I/O

	Verification Test Problems
	Hydrodynamics Test Problems
	Sod's Problem (and Other Shock Tube Problems)
	Sedov Problem
	Rayleigh-Taylor

	Gravity Test Problems
	Radiation Test Problems
	Light Front
	Diffusion of a Gaussian Pulse
	Radiation Source Problem
	Radiating Sphere

	Regression Testing
	Test Suite Inputs File
	Initializing the Test Suite
	Regular Use
	Updating Benchmarks

	Managing Jobs on Jaguar
	Automatic Restarting and Archiving of Data

	Scaling
	Sod Problem in 3D
	White Dwarf in 3D

	Suggestions, Warnings, and Gotchas
	Compilers
	Those that compile...
	Those that don't compile...

	References

